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ABSTRACT

The objective of this study was to develop a high-resolution-explicit-multi-block

numerical algorithm, suitable for efficient computation of the three-dimensional, time-

dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a

finite volume approach, using MUSCL-type differencing to obtain state variables at cell

interface. Variable interpolations were written in the ,_-scheme formulation. Inviscid

fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector

splitting techniques, which are considered state of the art. The viscous terms were

discretized using a second-order, central-difference operator.

Two classes of explicit time integration has been investigated for solving the com-

pressible inviscid/viscous flow problems --two-stage predictor-corrector schemes, and

multistage time-stepping schemes. The coefficients of the multistage time-stepping

schemes have been modified successfully to achieve better performance with upwind

differencing. A technique was developed to optimize the coefficients for good high-

frequency damping at relatively high CFL numbers. Local time-stepping, implicit resid-

ual smoothing, and multigrid procedure were added to the explicit time stepping scheme

to accelerate convergence to steady-state. The developed algorithm was implemented

successfully in a multi-block code, which provides complete topological and geometric

flexibility. The only requirement is C ° continuity of the grid across the block interface.

The algorithm has been validated on a diverse set of three-dimensional test cases of

increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic

plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an



ONERA M6 wing, and (5) unsteadyflow of a compressiblejet impinging on a ground

plane (with and without crossflow). The emphasisof the test caseswasvalidationof

code,and assessmentof performance,as well asdemonstrationof flexibility.
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CHAPTER 1

INTRODUCTION

1.1 Historical Background

Recent developments in numerical methods and their applications permit the solving

of complex, realistic geometries and configurations for compressible flows. Currently,

computational fluid dynamics (CFD) is used effectively to unravel and elucidate fluid

flow phenomena which are difficult to study in the laboratory. The demand to solve

finely detailed models of physics has challenged many researchers to come up with new

and efficient tools. This demand has resulted in revolutionary concepts in computer

architecture designs and software development.

The birth of CFD can perhaps be linked to the early work of the English mathe-

matician Richardson in 1917 [1]. He attempted to integrate the meteorological equations

numerically. It is interesting to note that he started this process, which evolved into a

new science, as an ambulance driver during World War I. He made the computations

by hand, [!]. His attempts were unsuccessful due to a limited theoretical understanding

of the stability of numerical methods, and to a lack of computing power. Richardson's

failure outlined the areas which needed to be developed. In 1928 Courant, Friedrichs,

and Lewy [2] introduced their famous stability condition, which became subsequently

the CFL number, and represented a landmark mathematical result that has had a massive

impact on computational research.

The practical birth of CFD came in the late 1960's when significant computing power

became available. Since then, there has been considerable progress in the field of CFD.



The growing fieldof aerodynamics, and the aviationindustryhave been the catalystfor

the revolutionaryforce of CFD. In thissection,a briefreview of previousComputational

Fluid Dynamics work relatedto thepresentwork ispresented.For a more generalreview

of CFD, the interested reader should review Refs. [1, 3-6].

One of the first major advances in Computational Fluid Dynamics was the work by

Hess and Smith [7], who inta'oduced panel methods to solve the linearizcd potential flow

equation. Later the panel method was extended to lifting flows by Rubbert and Saaris

[8] and supersonic flows by Woodward [9]. In 1986, Kandil and Yates [10] extended

the method to solve the steady, full-potential equation. In 1987, Kandil and Hong [11],

successfully formulated the vortex-panel method in a moving frame of reference.

In the early seventies, two major breakthroughs were reported which allowed the

solution of non-linear mathematical models. Murman and Cole [12], devised the idea of

mixed differencing (central differencing in subsonic regions, and forward or backward

differencing in supersonic regions of flow). They employed a line relaxation method for

the entire flow field, which was partly elliptic and partly hyperbolic. Their work, and

the work of Jameson [13], was the catalyst for developing two- and three-dimensional

algorithms using the Small Disturbance Equation, and the Full Potential Equation.

An interesting review of the memoirs of Murman and Cole is presented in a review

paper by Hall [14]. The second major breakthrough was the work by Magnus and

Yoshihara [15]. They advanced the Euler Equation in time towards a steady-state,

thus transforming a mixed elliptic-hyperbolic problem into a purely hyperbolic one.

Another landmark in the history of CFD came in 1970, when McCormack introduced

his widely used predictor-corrector explicit difference scheme [16]. Subsequently, in

1981, McCormack [17] developed an implicit analogue of his explicit finite difference

method. In 1975, Warming and Beam [18] introduced a fully upwind predictor-corrector

2



method, which is similar to the McCormack method. Briley and McDonald [19], and

Beam and Warming [20, 21] employed an Alternating Direction Implicit (AD/) scheme

for solving the Euler and Navier-Stokes equations. The roots of ADI schemes trace back

to Peaceman and Rachford [22], Douglas [23], and Douglas and Gunn [24]. Steger [25],

adapted the Beam and Warming scheme to general curvilinear coordinates. ADI evolved

to an effective tool and currently is employed in state-of-the-art codes designated ARC2D

and ARC3D [26].

On the other hand, another important family of time integration schemes --explicit,

multistage time-stepping schemes (Runge-Kutta methods)-- started to evolve in the early

eighties. Jameson, Schmidt, and Turkel [27], introduced explicit, multistage time-stepping

schemes, to the CFD community. Explicit-multistage schemes were developed further,

and have been applied successfully to compute solutions to the Euler, and Navier-Stokes

equations, for two- and three-dimensional problems [28-35]. Explicit schemes combine

naturally with accelerating techniques such as: local time-stepping, residual smoothing,

and multigrid accelerating techniques. They are also well suited for parallel computing

[36, 37].

The restriction on the time step for explicit schemes was the catalyst to develop

implicit schemes. Implicit schemes require more computation per time step (iteration),

but allow a larger time step to be used. The implicit time integration scheme may be

stable for any step size, according to linear theory, yet it is limited in practice by the non-

lmearity of the governing equations. Due to simplifications made during the development

of these methods (linearization) and the frequent use of explicit boundary conditions, the

maximum allowable Courant-Friedrichs-Lewy number (CFL) is reduced. To date, the

relative merits of implicit and explicit schemes are still an open debate for steady and

unsteady flow calculations.



Implicit residualsmoothing extends the stability limit, and improves the damping

properties of the multistage time-stepping scheme. Lerat [38], introduced the idea

of residual smoothing for the Lax-Wendroff scheme [39]. Jameson and Baker [29]

apphed the idea of implicit residual smoothing in conjunction with the modified Runge-

Kutta schemes. This procedure was developed further in Refs. [28, 33, 40-42], where

they employed a central-implicit-residual-smoothing operator. The use of an upwind-

residual-smoothing operator was employed by yon Lavante and Gronner [43], and Blazek

et al. [44].

Multigrid acceleration techniques were developed originally by Fedorenko [45, 46]

starting in 1961. Subsequently Brandt [47] apphed the technique to an elliptic set of

equations. The work by Brandt and many others has led to the popular use of multigrid

by many in the fields of apphed mathematics and computational engineering. Excellent

developments of the multigrid technique can be found in Refs. [48-50], Multigrid

was used successfully for solving the potential, Euler, and Navier-Stokes equations,

Refs. [51-55]. Multigrid acceleration techniques performed well when combined with

central-difference methods, but the convergence rate deteriorated with upwind spatial

operators because they are less dissipative. One must ensure that the basic upwind

scheme exhibits good damping of high frequencies on both fine and coarse meshes. An

attempt to derive a mathematical operator to eliminate the high-frequency components

of the error should be pursued.

In the early 1980's, computers were powerful enough to permit the computation of

solutions to the Euler equations. A new wave of inviscid upwind and central-difference

schemes evolved. Upwind schemes attempted to construct the flux by modelling the un-

derlying physics, as dictated by the sign of characteristic waves, while central-difference

schemes computed the interface flux as an average of the two adjacent cells, disregarding
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characteristic theory. A comparison between central-difference schemes, and upwind

schemes and how they are related is given by Swanson and Turkel [56].

A prevalent way to introduce upwinding into the governing systems for hyperbolic

conservation equations has been to split the flux according to the characteristic speed

(q, q__c)). Steger and Warming [57], were the first to devise a conservative-second-

order-flux-vector splitting-upwind scheme, without the use of limiters, for the solution

of the governing equations of gas dynamics. Anderson, Thomas, and van Leer [581,

developed the Monotone Upstream-centered Scheme for Conservative Laws (MUSCL)

approach with limiters which was incorporated in the Steger-Warming scheme. The

MUSCL approach resulted in a better shock capturing capability. The main disadvantage

of the Steger-Warming-flux-vector splitting scheme was that the backward and forward

fluxes were not differentiable. This leads to oscillation at shocks, van Leer [59], devised

an alternative splitting scheme. The advantage of van Leer's flux-vector splitting over

the Steger-Warmmg flux-vector splitting scheme, was that the split flux-vectors were

smooth and had smooth first derivatives with respect to the Mach number, so that their

eigenvalues were also smooth [58].

The inviscid flux can be split in a number of ways. The Split Coefficient Matrix,

(SCM) as introduced by Chakravarthy, Anderson, and Salas [60], is a natural way of

splitting the flux based on the sign of the eigenvalues of the governing system of

equations. A similar scheme that is based on the theory of characteristic is Morreti's

A-scheme [61]. Both the SCM- and A-schemes have been applied to the non-conservative

form of the governing equations, and require shock-fitting techniques in the presence of

shocks. The conservative form of the governing equations permit shock waves to be

captured as weak solutions to the governing equation [39, 62, 63], thus avoiding the

difficulty of applying shock-fitting techniques.
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In 1959, Godunov [64],introduced the idea of advancing in time by solving the

Riemann problem ateach ceil.This techniquehas been extended tohigherorder schemes

which are known today as Gudonov-type schemes, [65-71]. A review of Gudonov-type

schemes ispresentedby Roe [5],and Yee [72].Currently,upwind schemes arebeing used

on a regularbasisforcomputing solutionstotheEuler and Navier-Stokesequations.They

have been implemented and validatedin severalstate-of-the-artcodes, such as CFL3D

[73],ISAAC [74],PAB3D [75 ] and FTNS3D [76] .

Alternatively,Jameson, Schmidt, and Turkel [27] have introduced multistagetime-

stepping schemes, coupled with a central-differenceoperatorand explicitlyadded dissi-

pation terms. The explicitdissipationterm was a blend of second-order-differenceand

fourth-order-differenceterms. Second-order-differenceterms suppress oscillationsin the

neighborhood of shock waves, while fourth-order-di_erenceterms arecrucialfor the sta-

bilityand convergence tosteady-state.Dissipationterms have been scaledby userdefined

coefficients.Detaileddiscussionof the influenceof the dissipationterms on the perfor-

mance and qualityof steady-statesolutionscan be found in Kandil and Chuang [77],

Rizzi [78],Pulliam [79],and Swanson and Turkel [51].

Currently, the state-of-the-an in computational fluid dynamics replaces scalar dissipa-

tion with a matrix-valued dissipation function. Employing matrix dissipation enhances the

shock capturing capabilities of the central-difference technique, and reduces the smearing

of shocks and contact discontinuities which were characteristic of the original central-

difference schemes [5 i]. Central-difference operators, coupled with a matrix-valued dis-

sipation function, are nearly as accurate as upwind schemes, and have the merit of being

computationally cheaper and easier to program [56].

The numerical dissipation terms play an important role in the success of the compu-

tations by central-difference methods. For every new configuration, the exact (optimum)



level of artificial dissipation is not known a priori. The level of numerical dissipation

can be turned up, by a novice user, to the point of masking the physics of the prob-

lem. A certain level of expertise with central-difference schemes and with the physical

problem of interest is required to select the optimum (acceptable) level of dissipation.

Central-difference schemes have been applied in state-of-the-art schemes, TLNS3D [28],

ARC2D and ARC3D [26] and FLOMG [32].

The application of the above numerical methods to realistic three-dimensional con-

figurations of significant geometric complexity is virtually impossible without the use

of Domain Decomposition techniques. Here, the computational domain is divided into

multiple blocks (zones) and the grid for each block is then generated. A computational

grid of this type adapts more easily to the shape of the body as well as to the flow

features. Typically, the transfer of information between the blocks is carried out explic-

itly by ensuring the conservation of fluxes across the block interfaces. The consequence

of this procedure, for an implicit operator, is a significant reduction in the maximum

allowable CFL number.

Generating a single body fitted grid for complex, three-dimensional realistic ge-

ometries is a difficult task to perform; for some configurations it is almost impossible

[80-82]. Several grid methodologies such as overlaid grids [83], patched grids [84],

blocked grids [85], and unsu'uctured grids can be applied to simplify the grid generation,

provide geometric flexibility, and even provide mesh refinement. Several methods have

been investigated for unstructured grids, Refs. [86-89]. These methods require more

memory and computational time and fall short of their structured counterpart in terms of

efficiency and accuracy [87]. The theory and algorithms for unstructured grids have to

evolve before they can be used for solving practical three-dimensional problems.



Explicit-upwind schemesappearto bea goodcompromisebetweenexplicit-central-

differenceschemes,andimplicit-upwindschemes.Schemesconstructedalongtheselines

combine the advantagesof: simplicity; prudent use of computational resources; and

accuracy in resolving the flow field. Upwind schemes are more complex and are usually

reported to be better suited for compressible viscous computation. Upwind schemes are

very effective in converging to steady-state on single grids of modest complexity. Most

of the currently used upwind schemes are implicit. Explicit schemes require less memory,

and are easily implemented in a multi-block environment. They are also naturally suited

for implementation on massively parallel computer architecturs. The main drawback of

explicit schemes is the limitation on the allowable time step.

If the explicit time-stepping scheme is augmented with suitable accelerating tech-

niques, such as local time-stepping, residual smoothing and multigrid acceleration, the

explicit method will be superior to its implicit counterpart. Variable coefficient resid-

ual smoothing will increase the stability range of the scheme, thus allowing the use of

a higher CFL number (larger time step), which enhances the rate of convergence and

removes the diffusion limit on the time step. Multigrid acceleration techniques will ac-

celerate the convergence to steady-state by using large time steps on coarser grids, and

help achieve convergence rates that are independent of the number of grid points [47]

Recem advances in computer architecture and algorithmic tools open the door for

a new wave of opportunities for constructing explicit, upwind-higher-order schemes.

Currently the existence of robust, multi-block, explicit, upwind schemes that can be

applied on a routine basis are not available. Upwind-high-order schemes are essential

tools, required to capture complicated physical phenomena associated with problems of

current interest.



Explicit-upwind-schemesare still in their infancy and many basic issues are yet to be

settled. In order to lay the foundation for future research, a joint analytical and numerical

study should be conducted to validate and demonstrate their capabilities and performance.

1.2 Objective of Present Work

The goal of the present work was to develop a general state-of-the-art, multi-block

algorithm, capable of solving the governing equations of fluid motion efficiently, for

a wide range of configurations with both internal and external flow. The requisite

algorithm should be simple, efficient, and robust. It is required to damp the high frequency

component of the error (necessary for multigrid) effectively, while acquiring low levels

of numerical dissipation for accurate predictions of viscous effects, and still maintaining

high resolution on stretched grids. The developed algorithm will be used subsequently

to simulate complex three-dimensional, steady and unsteady flow problems.

Hence, a control-volume, explicit-multistage-high-resolution upwind scheme, suitable

for efficient computations using block structured grids, was desired. Upwind schemes

were selected due to their high degree of reliability in viscous flow computations and

their superior shock capturing capabilities [90]. The state variables at the cell interface

have been determined by MUSCL interpolation using the so-called _ scheme. Two state-

of-the-art, upwind schemes: Roe's flux-differencing and van Leer's flux-vector splitting

schemes, were utilized to evaluate the inviscid flux at the cell interface. The viscous

stress and heat flux terms in the governing equations have been centrally differenced.

In this study, the objective was to devise explicit, upwind time-stepping schemes

that can be combined successfully with upwind-spatial operators. Explicit schemes

have the merit of being computationally cheaper and easier to program and implement

in a multi-block code. Two classes of upwind schemes: multistage time-stepping



schemes,and predictor-correctorschemes,were suggested and have been implemented

in the developed algorithm. Modified Runge-Kutta methods with standard coefficients

have been successful with central-difference spatial discretization. Yet, they have not

performed as well with upwind differencing. The standard coefficients have to be

modified to achieve better performance with upwind differencing.

The next objective was to augment the explicit time-stepping schemes with accel-

erating techniques, such as local time-stepping, implicit residual smoothing and the full

approximation storage (FAS), to enhance the rate of convergence to steady-state.

Current aerodynamics designs are often quite complex (geometrically). Flexible

computational tools are needed for the analysis of a wide range of configurations with

both internal and external flows. Hence, another objective was the implementation of the

developed algorithm in a multi-block code to allow for greater geometric flexibility.

The final goal was to validate the developed computer code on several test cases of

interest to demonstrate and assess the predictive capability of the algorithm. The test

cases considered were: corner flow, plume flow, laminar and turbulent flow over a flat

plate, an ONERA M6 wing, and the unsteady three-dimensional flow of a jet impinging

on a ground plane.

1.3 Thesis Outline

In chapter two, the mathematical formulation of the governing set of equations of

motion (Reynolds-Averaged Navier-Stokes equation, Navier-Stokes equation, and Euler

equation) are presented and discussed. Details of implementing the Baldwin-Lomax

algebraic eddy viscosity turbulence model in the algorithm are presented. In chapter three,

the finite volume formulation of the governing equations is presented. The MUSCL type

differencing, and the type of discretization for the inviscid and viscous flux is discussed.

I0



Two differentupwindflux formulations --Roe's flux-difference splitting, and van Leer's

flux-vector splitting-- are presented, and practical issues concerning their implementation

are discussed. In chapter four, the temporal discretization of the goverrdng equations,

which represents a major part of this work is presented. Two classes of explicit

time integration schemes --multistage time-stepping schemes and predictor-corrector

schemes-- are presented and discussed. Details of optimizing the multistage explicit

time integration scheme through local Fourier analysis of the scalar advection equation

are presented. Accelerating techniques, including local time-stepping, residual smoothing,

and multigrid acceleration techniques are presented in chapter five. In chapter six, the

multi-block capability of the developed algorithm is presented. The interaction between

multigrid and multi-block implementations are discussed. The boundary conditions

employed, in the developed algorithm, are presented within the framework of multi-block.

Several test cases of general interest to the computational fluid dynamics community were

conducted to validate, demonstrate and assess the performance and predictive capability

of the present algorithm. Results of these computations are reported in chapter seven.

The Conclusions for the present research work, and recommendations for future research

are presented in chapter eight.
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CHAPTER 2

GOVERNING EQUATIONS

The governing equations were derived from the basic principles of conservation of

mass, conservation of momentum, and energy. The conservation laws were then coupled

with the thermodynamic properties and constitutive equations to yield the governing set

of equations for fluid motion. The derivation of the governing equations can be found

in [91, 92]. Three different sets of governing equations have been used pertaining to

the different test cases investigated in this study. These sets of equations are the Euler

equations, Navier-Stokes equations, and Reynolds-Averaged Navier-Stokes equations.

Each set is represented ultimately as an algebraic set of equations. The three sets of

governing equations have been implemented in the numerical algorithm. Coupled with the

appropriate set of boundary conditions, the developed algorithm is capable of computing

inviscid, laminar, and turbulent fluid flows numerically.

2.1 Navier-Stokes Equations

The time-dependent, compressible, three-dimensional, Navier-Stokes equations in

Cartesian Coordinates, written in strong conservation form (neglecting the body forces

and external heat sources) are:

o{p-p }+ + _-o
Ot O_ Off O'i

(2.1)
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where Q is the state vector of the dependent variables, given by:

x - momentum

= = y - momentum (2.2)

z - momentum

Total energy

F, F,_, G, G,_, _r, and H,, are the dimensional flux-vectors. They are function of the state

variable vector, Q, and are given by:

_= , po= r..^ (2.3)

G: P P", Gv = rr_ (2.4)

A0}H= _'_t_ , B',,= _'^-- (2.5)

•_. g 2

The first row in the vector differential equation, eq. 2.1, is the conserved form of the

continuity equation, while the fifth row is the conserved form of the energy equation. The

second, third and fourth row are the conserved forms of the momentum equation in the x,

y, and z directions, respectively. It should be emphasized that while the conservation of

mass and energy are scalar equations, the conservation of momentum is a vector equation

with three components. In the absolute sense only the x-momentum, y-momentum, and

z-momentum are the Navier-Stokes equations of fluid mechanics. It is customary within

the computational fluid mechanics arena to refer to eq. 2.1 as the Navier-Stokes equations.

This terminology will be adopted in this study.
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Fluid density is designated as p; u, v, and w are the velocity components in the x, y,

and z directions, respectively; E is the total energy; r# are the components of the shear

stress tensor; qx, qy, and qz are the components of the heat flux-vector in the x, y, and z

directions respectively; and T is the temperature. The superscript '"" in vector e._q. 2.1

indicates a dimensional quantity.

In this study we assume that the stress is linearly dependent on the rate of strain;

i.e., the Newtonian fluid assumption is adopted. The components of the viscous stress

tensor in Cartesian coordinates are given by

^ = = 7^7,

(2.6)

+ =

"#\as or/

# is the first coefficient of viscosity, and A is the second coefficient of viscosity. To

date, the value for A for air, and how to model it, especially for compressible flows, is

still disputed [93]. In this study we employ Stokes hypothesis; i.e., we assume the bulk

2
K = A + =/_ = 0 (2.7)

viscosity, K, is zero or negligible

Stokes hypothesis is not necessarily endorsed, but for lack of a better model, it has been

employed. It is understood that this assumption is not valid in shock regions and in regions

of high gradients [94]. Invoking Stokes hypothesis yields the following expression for
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the shear stress terms

2^;

r.;.; + Oz J y

(2.8)

The first coefficient of dynamic viscosity varies with temperature and can be approximated

by an approximation of Sutherland's law [93, 95]

- ( _T--_--_) n (2.9)

\T.s/
where _reI and Tre/are the dynamic viscosity and temperature at reference conditions.

This formulation is simple and gives reasonably good results. The parameter n is taken

to be 0.76.

The heat flux is modeled by Fourier's law of heat conduction, where

_'_=-k-b--_, _'_-=-e-b-if, and _'7=-k-b--- ff

where k is the thermal conductivity which will be represented by

(2.10)

= _---_ (2.11)
Pr

Here, Pr is the Prandtl number, and Cp is the specific heat at constant pressure. The

Prandtl number is nearly constant for most gases (Pr = 0.72 for air).

The equation of state for a perfect gas relates the pressure to density and temperature

and is given by ff = p"7_T, where 7_ is the gas constant, which relates the specific

heats for an ideal gas by:

R = _ - F_.,, (2.12)
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with F.,, representing the specific heat at constant volume.

calorically perfect gas

If we assume further a

= _ (2.13)

where _"is the internal energy. Now, neglecting the potential energy, the total energy, E,

can be defined as the sum of the internal energy and kinetic energy;

(2.14)

If we define 7 = _ as the ratio of specific heats, the above equations can be combined
Cu

to yield the relation between pressure and total energy

_= (-y-1)ff=('r-1)[g - !_(_22

2= _ _ +!_(_2 +_2 +,_)
'7-1 2

+ _2 + _2)]
(2.15)

2.2 Normalization of the Governing Equations.

Computing in an appropriate non-dimensional or normalized domain has the advan-

tage that all variables are of the same order of magnitude, which enhances the performance

and accuracy of numerical algorithms. Normalization eliminates the physical dimensions

from the equations. Thus allowing general characteristic parameters such as Reynolds

number, Mach number and Prandtl number to be changed independently. Hence para-

metric studies on any of these characteristic parameters can be performed easily.
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Different variablesor combinationsof variables can be used in the normalization

procedure. In this study we define the non-dimensional flow variables to be

x= 7, y=Z, z=z, ,=_

_ U "- :--"--_ W -- ^ )
U = aref are/ aref

p _

Ap

E=-- H-

a ref

_ _f

,

ref

T_ ^

Tre f '

^2
a ref

(2.16)

Here a,.ef is the reference speed of sound; H is the total enthalpy, and L is a reference

length. The subscript ref indicates the reference condition. By substituting the non-

dimensional flow variables into the Navier-Stokes equations, eq. 2.1 we get;

- _{_,-,,}_ _{P-P'}_{__'}+ _o
-ffi + 07 + ov O:

(2.17)

where _), ?, and ff_ are given by

{'}pu

(_, : pv ,

pw
E

{"}
pu 2 + P

-" pUV ,

puw

(E + p)u

0}+--"rzz

Tzy

_'zz

_,r,, + vr, y + wr,, 7_,_
_18)

here

qre f

M,,f -
are f

Rref ._ Prefqref L (2.19)

"_,¢f

B=-r-1

where Mmf, and R, 4 are the refefience Mach number and Reynolds number respectively,

while q, ef is the velocity magnitude at reference conditions. Similar expressions can be

developed for G, Gv, H, and H,,.
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2.3 Curvilinear Coordinate Transformation

Most practical fluid flow problems of interest, are solved in domains with irregular

shapes and boundaries. This causes difficulty in implementing the boundary conditions.

In regions of high gradients, (shock waves, vortex regions, and shear layers), one needs

to pack grid points in order to capture details of the flow field, and render accurate

results. The uneven packing of grid points complicates the differencing operator. To

avoid these difficulties, the governing equations can be transformed into a body fitted

coordinate system, thus simplifying the numerical differencing and the implementation

of boundary conditions.

The curvilinear coordinate system is assumed related to the Cartesian coordinates by

_,=_{x,v,:}, _= _{x,v,z}, ¢ = ¢{_,v,z}

O O O O

0"-_ 0"-(

8 = _ 0__ t9 _ (2.20)
0¢

±
8z

The transformation matrices are

_ = -J(v_z_-y_z_),

¢_ = J(v_z. - v,,z_),

8 8 8

given by [4];

_, = -J(_,,z¢- x¢z.,),

r/,= J(z_z(-zez_),

¢,= -s(x_z. - _.z_),

where J is the Jacobian of the transformation;

J

8{,',,7, ¢}
8{z,y,z}

= rlz

G
r/y r/z

G G

These formulations allow the governing equations to be written as;

8Q 8{F- F,,} a{G-G,,} 8{H- H,,}
8-7 + 8_ + Orl + 8¢

(_ = J(zcV, 1 - z,TY_02.21)

(2.22)

= 0 (2.23)
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where

with

where,

1

1

H,= 7

puU + p_x puV + prlz puW + p_x

pvU + p_ , G= pvV + _ , H= pvW + p(y

pwU + P_z pwV + prlz pwW + p_z

(E + p)V (E + p)V (E + p)W

U = u(x + v(y + w(z

V = urlx + vrly + woz

W = uG_+ v_y + wG

F,_, G,_, and H,, are presented in Appendix A.

2.4 Thin-Layer Navier-Stokes Equations

(2.24)

(2.25)

(2.26)

The Navier-Stokes equations govern the motion of unsteady compressible fluid flow.

The solution of the Navier-Stokes equations require a fine grid to capture the diffusive

effects. Performing the computations on a fine grid requires extensive amounts of

computer time and memory. At high Reynolds numbers, the effect of viscosity is confined

to a thin region near solid walls where a boundary layer exists. The dominant viscous

effects in the boundary layer arise from viscous diffusion normal to the body surface. A

desirable approximation is to neglect the viscous terms containing derivatives in directions

which are tangent to the body surface [26]. This assumption is often justified since the

viscous terms containing derivatives in directions parallel to a solid boundary are usually

substantially smaller than the terms with derivatives normal to the boundary. It would
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alsobeimpracticalto think of a fine grid in all three directions. Viscous grids are usually

dense along only the solid walls. Thus it makes sense to neglect the terms that are

not properly resolved, especially if they are an order of magnitude smaller than other

viscous terms.

The thin-layer Navier-Stokes equations are derived from the Navier-Stokes equations

by neglecting all cross derivatives in the viscous fluxes F,, Gv, and Hy. For example

all derivatives with respect to 77 and _ in the Fv viscous flux are neglected. Similarly

for Gv, and Hr.

During development of the numerical algorithm, it was desired to maintain generality.

Since it is not known a priori which direction will coincide with the solid boundary, or

whether there will be more than one boundary surface, the thin shear layer approximation

was applied in all three directions. The thin shear layer equations used in the developed

algorithm are given by

aQ a{F- F_} a{G-G,,} a{H- H,,}

+ a( + a,7 + a( = o (2.27)

where Q is the state vector of dependent variables. F, G, and H are the inviscid fluxes,

described in eq. 2.25, and

F_ -'-

M_ef/_

J_'ef { o. }
_(._ + _ + _) + cu + _;,T_ ='

1

where, ¢_ = __2+ _2 + _z2 and, d_ = -ff(uf,f,z + v_._y + w_,f,z)

(2.28)
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a_

O.

,..(02) + ,7.o
o,,(02)+ ,7,,0
_,,(e2) + ,7.0

o2(,,u,,+ vv,,+ _,,) + ov + 76-;T,,02
(2.29)

where, 2 2
02= _2 + r/y + %, and,

1

O = _ (u,lr/, +%% +w,_0,)

Finally,

{ 0 },,¢(,p2)+ G_'
w_(_,2) + Cz_

(2.30)

1

where, _o2 = (z2 + (2 + (_, and, g, = -,_(u¢(_+v¢(v+w¢(z)

Based on the type of problem computed one or more viscous fluxes

neglected [76, 96].

can be

2.5 Reynolds-Averaged Navier-Stokes Equations

Almost all flows encountered in fluid mechanics are either fully turbulent or partially

turbulent. The nature of the flow and the purpose of the numerical study dictate the

accuracy levels for modeling turbulent effects or the justification for neglecting turbulent

effects completely (and simply assuming laminar flow). Turbulence enhances the rate of

heat transfer, and alters the skin friction. Turbulence also affects the location of flow

separation, the mechanism for separation, and the size of the separation bubble. Surface

pressure forces, lift and drag, are also affected by the level of turbulence in the flow.

Turbulent flows are in principle still governed by the Navier-Stokes equations, eq.

2.23; however extremely fine grids and higher order schemes are required to resolve all

time and length scales that accompany realistic turbulent flows. This type of computation
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is known as Direct Numerical Simulation; it represents a challenge to today's computers

and numerical algorithms. Direct Numerical Simulation (DNS) has been restricted to

low Reynolds number flows since the number of grid points required is proportional to

the 9/4 power of Reynolds number, [97]. The significant cost of DNS calculations, even

for simple flows, makes them impractical for current engineering applications. Perhaps

with the development of new computer architectures, and with more parallel machines,

DNS will become a practical approach. From that point of view, if the grid is coarse and

must still resolve the mean details of turbulent motion, then we must resort to modeling

the turbulent effects by superimposing them on the mean flow. At present, turbulence

modeling forms the basis of most of the computational work in turbulent flows.

Hinze [98] best described turbulent flow as "Turbulent fluid motion is an irregular

condition of flow in which the various quantities show random variation with time and

space coordinates so that statistically distinct average values can be discerned". Follow-

ing the footsteps of Reynolds, we decompose the randomly changing flow properties into

mean and fluctuating components

q = _ + 4 (2.31)

where q is the property being decomposed and tj is the fluctuating component; _ is the

mean property defined by

to+At

q = /X--t q dt (2.32)

to

At is a time interval which is long compared to the period of any significant turbulent

fluctuations, but/Xt is assumed to be short compared to the time scales associated with

the mean flow. If we apply the decomposition procedure to all state variables in the

Navier-Stokes equations, we get the Reynolds-Averaged Navier-Stokes equations which
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work well for simple incompressible flows. For compressible flows, mple correlations

involving density appear in the equations. Favr_ [98] suggested a mass weighted

decomposition for compressible flows to avoid the triple correlation involving density.

The following formulations were used to decompose the flow variables in the Navier-

Stokes equations 2.1.

= p___,_ = p___,_ =_--,P-Th =--
p p p

where u=_+_, T=T+T, H=H+H

note p=_+i6, p=_+_6

while (_ + P)q = O,

b.t _o

(2.33)

Substituting the above formulations into the Navier-Stokes equations and averaging in

time, we get the mass averaged Navier-Stokes equation. The details of this procedure are

presented in Appendix B. The non-dimensional mass averaged Navier-Stokes equation

'_ + b-_ + ov + Oz = o (2.34)

is given by

where

P_= _(_ + _z)

(2.35)

0.0

-3
#u . Ov

On . 8w

u 2 [ 2 au _ a,, aw _ _ via, _ av 'l .

. /Su_ 8w_-- aT

wk57 "1-"b"_'z) -t- a'b'F-.36)(2

pu z + P

P = puv ,

puw

(E + p)u
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puv M,e!
d= o,,z + v , dv (_,+ _)

pvw - _

(E + p)v It

0.0
Ou Ov
_+_

g -_"i-
Ov Ow

f 2o,, o. __ ) +

_OT

puw

[1 = pvw ,

pw _ + p

(E + p)w

0.0

Ou _t__zww

o.g

_'z'z- _ + _r'bT,
(2.38)

where _r - _(/_ +/zT) + (2.39)

is the molecular viscosity, and _r is the eddy viscosity. The eddy viscosity is supplied

by the turbulence model. Pr is the laminar Prandtl number and PrT is the turbulent

Prandtl number. For air, we take Pr = 0.72 and PrT = 0.9

Replacing /_ in the Navier-Stokes equations, eq. 2.17, with /_ +/_T and replacing

1 with 1 (_'_r _)_ + yields the modeled Reynolds-Averaged Navier-Stokes

equations. Thus one can conclude that the mathematical formulations of the two sets

of equation are similar.
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2.6 Baldwin-Lomax Algebraic-Turbulence Model

In this study, the Baldwin-Lomax turbulence model was selected to model the eddy

viscosity. The model is a two layer eddy viscosity model which implements a simple

algebraic expression to determine the turbulent eddy viscosity [99].

The inner layer eddy viscosity model is given by ;

where

and

l = kl y 1- exp --'A--4

(2.40)

(2.41)

Iwl = _ -_z + _z Oy J + Ox _z (2.42)

_/pwWma= / t_ef (2.43)
Y+ = Y v I_w VMreI

Where, Iwl is the magnitude of the vorticity; y is the normal distance from the nearest

solid wall, kl is a constant equal to 0.4, A + is a constant equal to 26.0, w,n,,z is the

maximum vorticity in a local vorticity profile along the coordinate direction normal to

the wall, p,o is the density at the wall; and Pw is the molecular viscosity at the wall,

The original Baldwin-Lomax algebraic-turbulence model did not implement wm,,x in

the formulation but rather suggested using the shear stress at the wall, r,,,. If there is

separation, implementing the shear stress at the wall yields inaccurate values for the

turbulence model. If there isn't any flow separation on the wall, it can be shown that

w,n,_ equals approximately r_. The second set of equations for the outer layer of the

Baldwin-Lomax algebraic-turbulence model are given as;

R,../
l_Toute,= K2Ccp p Fwake Fkteb_ (2.44)
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where
[

Fwake = min I

with the closure constant, Kz = 0.0168, Ccv

Vdif = (V/U2"4r V2 + w2 )l.,.. '

}c,., t (2.45)
Flql °2

= 1.6, Cwk = 1.0 for transonic flow, and

- ('v/u2+v2+w2)l,,,,,, (2.46)

along the coordinate perpendicular to the surface at a particular wall location. For

example, equation 2.46 would be applied along a constant x-surface, if x is the streamwise

direction. The value ym,,_ corresponds to the location with F(y) = F(y)m,,:, where

F(y) = ylw, [1- exp{ y+

In wake regions, the exponential term for F(y) is set to zero. Alternatively, the Klebanoff

intermittency factor is used where;

FKLEB --

and CKLEB = 0.3.

(2.48)

2.7 Euler Equations

In this section the governing equations for inviscid compressible fluid flow are

presented. This governing set of equations is known as the Euler Equations. The Euler

equations are considered as an approximation to the Navier-Stokes Equations. They are

derived by neglecting the viscous and heat flux terms from the Navier-Stokes Equations,

eq. 2.23. Euler Equations are useful models in fluid flow problems where only information

on the pressure distribution is required. Numerical results for the Euler equations are

important in preliminary studies and design, and the Euler equations are capable of

capturing shock wave interactions and contact discontinuities accurately.
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The thr_-dimensional, time-del_ndent, compressible Euler equations are written in

general curvilinear coordinates (_,_,0 in a non-dimensional conservative form as :

where

F, G,

are given by

OQ OF OG OH
+-b--f+ + =o (2.49)

Q is the vector of dependent variables and is given by ;

and H are the inviscid flux vectors which are functions of the state vector Q and

puU + p_ puV + po_ puW + p(_

F= pvU + p_y , G= pvV + ly% , and H= pvW + p(_

pwU + p_ pwV + _ pwW + PG

(E + p)t/ (E + p)V (E + p)W

(2.51)

The Euler equations are a set of first-order hyperbolic equations in time. For steady-

state calculations, the mathematical nature of the equations changes from elliptic in the

case of subsonic flow to hyperbolic for supersonic flow.

Another set of equations that model compressible, irrotational, inviscid fluid flow

are the potential flow equations. The potential flow equations assume that the flow is

irrotational (X7 x q = 0), and do not account for vorticity and entropy changes. Thus

they are not capable of accurately capturing curved shocks, shock interactions or contact

discontinuities [92]. Hence the Euler equations were selected as the set of equations

that govern the inviscid compressible fluid flow in the numerical algorithm developed

in this study.
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CHAPTER 3
SPATIAL DISCRETIZATION

A control volume approach was employed in this study. The computational domain

was divided into a finite number of hexahedral cells. Each cell has its own volume V

and is bounded by its surface, S. Figure 3.1 shows a typical cell in the computational

domain. Each cell has six quadrilateral faces; each face defined by four vertices. The

/ "/

r,j

_J

i,j.k

O

t

///"

l..L_

i+I/2,j,k
_J

Cell Face

O Cell Center Cell Vertices

Figure 3 3.1 Schematic of Computational Cell

face of a hexahedral cell can collapse to an edge or even to a point, i.e., the four vertices

may lie at the same x, y, z location. By applying the basic principles of conservation of

mass, momentum, and energy to a stationary cell in the computational domain we extract
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the integral form of the governing equations

_oo,f f fo v +f
v s

where,

=0

(F-Fv)_ + (G-G_)) +(H-H,,)]c,

•t, _.

n_z + ny.1 + nzfc.

(3.t)

(3.2)

and n =

Q is the vector of conserved variables; F, Fv,G, Gv, H, and Hv are the flux-vectors which

are defined in eq. 2.23; n is the outward pointing unit vector normal to the surface S,

bounding the volume V. In the control volume approach, the state variables, Qij,k, are

stored in the center of each cell, and are considered to be a cell average rather than a

pointwise value at the cell center

{1 }
v ij,k

The merit of the integral form of the governing equations is that it is valid everywhere in

the computational domain, even across shocks and contact surfaces, while the differential

form of the equations are valid only in smooth regions. The use of the conservative law

form permits shock waves to be captured as weak solutions to the governing equations

where the discontinuities evolve as part of the solution, and are captured within one or

more grid cells.

A semi-discrete form of the differential equation, eq. 2.23, can be written as

O"-"'_ + (F- F_,)i+½0, k - (F- F_)i_{,j, _

+ (G - Gv)t,j+½,k - (G - G,,)i,j_½, k (3.4)

+ (H - H,),,i,k+½ - (H - H,)i,).k_ ½ = 0

where A_, At/, and A ( are taken equal to unity for simplicity. If the surface integrals in

eq. 3.1 are written as the sum of the conlributions from the six faces of the computational
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cell, then the relation between the integral form of the governing equation, eq. 3.1, and

the semi-discrete form of the differential equation, eq. 3.4, becomes obvious. As a result,

a geometrical interpretation of the Jacobian and metric terms of the transformation can

be made. The Jacobian is calculated as the inverse of the cell volume; the vector _ is

the directed area of the cell interface to a l = constant coordinate direction, l = _, T], and

(; _ is the area of the cell interface; the unit vector _ consists of the direction

cosines of the cell interface. The evaluation of the cell volume, and the directed area

is given in Refs. [92, 100, 101].

The finite volume method, when coupled with an explicit scheme, has the advantage

that the spatial discretization is decoupled from the temporal discretization. The temporal

discretization will be discussed in detail in the next chapter, while in this chapter the

consu'uction of the interface flux, and the spatial discretization wiU be emphasized.

The interface flux can be constructed either by a central-difference scheme or

an upwind-scheme. Upwind schemes attempt to construct the flux by modelling the

underlying physics, as dictated by the sign of the characteristic waves. Central-difference

schemes compute the interface flux as an average of the two adjacent cells, disregarding

the characteristic theory. A comparison between central-difference schemes, and upwind

schemes, as well as how they are related, is given by Swanson and Turkel in Ref. [56].

The numerical procedure employed for the evaluation of the interface flux utilized a

second-order, central-difference approximation to compute the viscous flux (Fv, Gv, Hv),

while a high resolution upwind shock capturing scheme was used to compute the inviscid

flux (F, G,/4). Roe's flux-differencing scheme and Van Leer's flux-vector splitting-scheme

were applied to the conservative forms of the governing equations to evaluate the inviscid

flux.
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A Monotone Upstream-centered Scheme for Conservative Laws (MUSCL) was used

to compute the inviscid flux at the cell interface. The state variables were extrapolated

from the cell center to the cell interface and the interface flux was computed subsequently.

An extrapolation of either the primitive or conservative variables can be performed. For

the most part, the primitive variables were extrapolated in this study, because they render

a smoother solution across shocks and slip lines and allow the use of a higher CFL

number, as will be shown in the results section. The extrapolation operator of the state

variables for the cell interface is based on the so-called _:-scheme formulation where the

state variables to the right and left of the interface are computed as follows

Q L+½=Q, +7 [ _
(19)

O (1 _)Vs÷i + (1 =[- _)/ki+ 1 ]
QiR+_ --Qi+I-7[ -

where, /'xi and Vi are the forward and backward differences, respectively, defined as

Ai = Qi+l - Qi

(20)
V, = Q, - Q,-1

The value of the parameter g determines the spatial accuracy of the scheme. Table 1

shows the conventional choices for a, the corresponding accuracy and the truncation error

based on one-dimensional spatial analyses [101]. The parameter, 0, is set equal to one for

high-order extrapolations, and to zero for first-order extrapolation. Although first-order

schemes possess good damping characteristics and allow a higher CFL number to be used,

they are too diffusive. In the present study, a = 1/3, a = -1, and _ = 0 have been used.

High-order=accurate upwind schemes produce spurious oscillations and may develop

instabilities near shocks and contact discontinuities. These oscillations can be reduced by

the use of some kind of limiting procedures called limiters. This is achieved by imposing

a constraint on the gradients of the dependent variables or on the flux functions. Several

limiters are available in the literature [72, 102-104]. In the present study the min-mod
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limiter and the differendable Vanalbda limiter have boen employed. The two limimrs are

discussed in Appendix C. The limiters prevent numerical oscillations, but at the same

time reduce the accuracy of the scheme to first order near discontinuities. The main

disadvantage of limiters is that they lead to a limit cycle, with no apparent convergence.

The residual will converge to a certain level and then "hang up". To overcome this

problem, the second-order strictly upwind formulation, _ =-1, was used which does

not require a limiter.

In summary, the present algorithm has employed a cell-centered, finite-volume ap-

proach with the state variables at the cell interface determined by the MUSCL interpo-

lation. The viscous and diffusion terms, at the cell interface, were discretized using a

second-order, accurate, central-differencing scheme, while a higher-order-upwind-scheme

(Roe's flux-differencing scheme [66] or van Lcer's flux-vector splitting-scheme [59]) was

used to construct the inviscid flux. Both Roe's flux-differencing scheme and van Lcer's

flux-vector splitting-scheme are capable of capturing relatively strong stationary --shocks

within one or two interior cells-- ff the shock is reasonably aligned with the grid. It

should be emphasized that the present algorithm employed a sequence of one-dimensional

operators in all throe coordinate directions _, 77, and _. Thus the use of highly skewed,

non-orthogonal grids should be avoided, ff possible, because the one-dimensional opera-

Table i Values of _ and the Corresponding Truncation Error.
i

Scheme Second-Order Truncation ErrorK

I/3 Third Order 0

-I

0

i/2

0

Fully Upwind

Fromm

Low TE Second Order

Central

-1/3 No Name
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tors assume that the waves interact normal to cell interfaces. This method of extending

one-dimensional sehernes to multi-dimensions was found to be quite satisfactory for the

test cases investigated in this study. A truly multi-dimensional approach is still in its

infancy, and is computationally expensive [5, 105, 106].

3.1 van Leer's Flux-Vector Splitting

A prevalent way to introduce upwinding into the governing systems of hyperbolic

conservation laws is to split the flux according to the characteristic speed (q, q+_c)). In

this study, van Leer's flux-vector splitting has been employed, because it yields sharp,

crisp shock surface. A disadvantage of van Leer's scheme is that it smears slip Imes

because it ignores the linear waves (entropy and shear waves) [107]. A brief summary

of the scheme is presented in this section. For more information about the scheme, the

interested reader should review the original paper of van Leer [59].

Following Ref. [59], the flux-vectors F, G, and H can each be split into two vectors,

a forward flux-vector, based on non-negative eigenvalues, and a backward flux-vector

based on non-positive eigenvalues.

F =F ++F-, G =G ++G-, H =H ++H- (3.7)

For local supersonic Mach numbers:

Mr > 1.0,

Ml _ -1.0,

(3.8)

where l = (, r/, and ( to indicate the three coordinate directions.

For subsonic local Mach numbers, IMII < 1.0 (in general notation for body fitted

coordinates [53]), a local scaled contravariant velocity component t_t is defined as

fit = l_u + lvv + lzw I = _, r/, ( (3.9)

v/l_ + l_ + l_
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where the local Mach number is given as

MI = --
a

and a is the local speed of sound. The fluxes are:

i_(-_ + 2a)/-_ +

I +

S;%,,_
where,

Zn "-
In

v/iT+ l_+ l_
, n-x,y, and z

(3.10)

(3.11)

(3.12)

and

Here;

f ,_a_ = + pa (M_ :5: 1) 2

3'2-1 + 2

(3.13)

(3.14)

F_= F F,7= G Fc= H (3.15)

and

tt( ----- lX ttr/ "- t,' U( _ W

L_ -- "/- 1

The "+" indicates a forward flux and the "-" indicates a backward flux.

(3.17)
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Applying the split flux to the semi-discrete form of the governing equations, eq 2.27,

_ves"

OQi,j,k

Ot--+ (F+ + F-- Fv),+_,,,k-(r + + r--F.),_lj,k

+ (a + + a- - av),,j+lk - (a + + a- - av),,___,k

+ (H+ + H- - Hv)i,.i,k+½- (H+ + H- - Hv)i,j,k__=0

(3.18)

The present formulation, when applied to transonic and low supersonic flows, does

not require the use of flux limiters for essentially oscillation free shocks. This was pointed

out by Anderson, Thomas, and van Leer [58], yon Lavante and Haerfl [ I08], Melson and

yon Lavante [I09], and Cannizzaro, yon Lavante, and Melson [110] and was explained

in more detail by van Leer [59]

3.2 Roe's Flux-Difference Splitting

Roe's flux-di.fference splitting is an upwind scheme that approximates the Riemann

problem at an interface between two cells by Roe's averaging procedure [66]. Roe's

scheme provides an exact solution to an approximate Riemann problem, and is capable

of handling slip lines with less smearing. The idea of advancing the solution to the next

time-level by solving a Riemann problem at each cell interface was first introduced by

Gudonov [64]. The Riemann problem and the different waves associated with it are

illustrated in Fig. (3.2). A good review of the different Riemann solvers is given in

Refs. [6, 72, 111].
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Figure 3.2 The Riem_n Problem.

Roe's scheme is used widely in practical applications of computational fluid dynamics

because it results in an efficient and accurate computation form. A comparison of

different numerical flux formulas for the Euler and Navier-Stokes equations, Ref. [107],

recommended the use of the Roe scheme. That recommendation was based on the fact that

the interface flux computed by the Roe scheme includes information about all different

waves mlinear and non-linear-- by which the neighboring cells interact. The scheme

gives good results when shocks, contact discontinuities, and slip lines are aligned with

the grid. The main advantage of the scheme is that it returns the exact solution whenever

QL and QR lie on opposite sides of shocks and contact discontinuities. However, Roe's

scheme can also represent an expansion shock due to the lack of a naturally constructed

entropy condition.

The interface flux-vector Ft is evaluated as

(fi+½) t l= 7[FR{QR}+FL{QL}- A(QR-QL)] (3.19)

FL and FR are the flux-vectors computed from the left and right states, and .4 is the

Roe averaged flux Jacobian matrix

.4: A[Q] (3.20)
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where

OFf
A = _ (3.21)

0O

and

[A] : Se[AIS_-1 (3.22)

S_ and S_ -1 are the right and left eigenvectors of Roe's averaged Jacobian matrix ,4; A

is the diagonal matrix of the eigenvalues of ,4. The Roe averaged state is computed as

= X,/'PRPL

= ULvSg + URv'Tff
,/_ + v'7-_

v_ + v_
wLv'P-f + WRv'P-d

_=
,/_ + ,/-_

f_ = HLv_ + HR,/_
,/-_ + v'_

a= (_-1) H-5{_-+_,_-+_2}

(3.23)

The tildes refer to the Roe averaged quantifies. The last term in eq. 3.19, i.e.

1,4 is due the character of the scheme and is(QR QL), a damping term to upwind

given in detail in Ref. [55] as

A (QR-QL)=

O4

tt04 -]- Iza5 + a6

t_o4 + ly05 + 017

lbo4 q- [z05 + 08

65

(3.24)

where,

65 : /7/04 -[- /_10_5 -_- _06 @ _307 + tba 8
_1 _2

3,-1
(3.25)
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and

O_1 =

Ot2 =

lilt - aI(AP - Pa/X_t)

Ct6 =

Or7 =

(3.26)

--_ 10tl;3(-_v- tyAat)

--_-_10_l;3(Aw- zzAa;)

with _ = ¢12 + 12 + l_, for l = _, 77, or (. The A refers to the difference between

the state variables on the left and right sides of the cell interface, such as Ap = PR - PL.

Here;

F_ = F F. = G F¢ = H (3.27)

and

u_ = u u, 7 = v u¢ = w (3.28)

For more information about the Roe scheme, the interested reader should refer to the

original work by Roe, Refs. [65, 66].
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CHAPTER 4
TIME INTEGRATION

In this study emphasis was placed on the simulation of complex three-dimensional

steady, and unsteady fluid flow problems. The selection of a particular type of time

integration technique, whether implicit or explicit, will determine the characteristics of

the numerical method used to investigate the fluid problem of concern. In this study,

explicit time-stepping schemes were used to construct the algorithm for solving the time-

dependent, compressible, Euler, and Navier-Stokes equations.

There are a large number of explicit schemes that have either been used previously or

are still in use for solving the compressible flow equations. The desired numerical method

should be simple, robust, have effective damping of high frequency errors (necessary

for multigrid), have low dispersion (low phase errors will reduce spurious oscillations

and result in faster convergence rates), low levels of numerical dissipation for accurate

predictions of viscous effects and it should maintain high resolution on stretched grids.

Programing simplicity is another important issue, since the goal is to implement the

time-stepping scheme in a multi-block code, and on massively parallel machines.

However, no generic time-stepping scheme was found that satisfied all of the re-

quirements, thus it was decided to develop explicit time-stepping schemes that could be

tailored to our needs. Two similar but distinct time-stepping schemes were developed

for the purpose of solving the compressible, time-dependent, governing set of equations.

The two schemes were the multistage time-stepping scheme, and the Predictor-Corrector

Scheme. Both schemes are explicit, but they are distinct since each of the techniques
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utilizes a different operator to compute the flux at cell interfaces. In order to understand,

compare, and assess the two time-stepping techniques, they were applied initially to the

model wave equation. There a conventional Fourier stability analysis could be carried

out, yielding amplification factors, and the stability characteristics for each scheme. Dis-

cussion of the evaluation of the two schemes will be presented and discussed in this

chapter.

4.1 Multistage Time-Stepping Scheme.

Modified Runge-Kutta methods, with standard coefficients, have been rather success-

ful when used in combination with central-difference, spatial-discretization techniques.

Unfortunately, they perform very poorly with upwind differencing schemes. In this sec-

tion an attempt has been made to modify the standard coefficients to achieve better per-

formance, resulting simultaneously in schemes that are, in general, of reduced accuracy

in time. To explore the damping properties and extend the stability limits of the explicit

multistage scheme, the scheme was first applied to the ordinary differential equation

dq
d---[= -zq where z > 0. (4.1)

and which has the analytical solution:

q = qoe -:(t-t°) (4.2)

Here, qo is the initial value of q at t = to.

A Taylor series expansion for qn÷l around q_ gives

dq" d'2q '' (_t) 2 d3q n (/_t) 3

q,,+l = q" + T A t + dr-' 2! + dt 3 :3! + ...... (4.3)

Substituting for the derivatives of q in the above equation

q"+l=q"[l+(-z/_t)+(-zAt)2+(-z_t)3÷ ...... ] (4.4)
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The above equation is the foundation of a numerical integration scheme known as the

modified Runge-Kutta Scheme [27].

Consider now the model wave equation in the form

Oq Oq
0-'7 + a_x = 0 (4.5)

where a is the wave speed which is assumed to be real and positive. Then

Oq Oq

Ot- aOx- R(q) (4.6)

where R(q) represents the right hand side of eq. 4.6. If we assume that q can be

represented in an exponential form, then

q = qoe-z(t-t°) (4.7)

where qo is the initial value of q at t = to. Therefore,

Oq -z(t-to)
= -qoZ_ (4.8)

Ot

Oq
w = -zq (4.9)
Ot

The multistage explicit time-stepping can be used to advance eq. 4.9 in time from time

step n to n+l in the following way

0 qnq =

ql = qn + _1 A tR(q °)

q" = q" + 0 2 /k tR(q 1)

(4.10)

qm ._ q,, + Orn A tR(q m-l)

qn+l -: qm
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Comparing eq. 4.9 and eq. 4.6 yields

Oq

R(q) = a-if-;= zq (4.11)

If we define

P = _t x z, (4.12)

combine P with eq. 4.11 and substitute into eq. 4.10, we get

q,,+l = qn(1 + c_mP + c_mc_m-lP 2 + .... + c_1c_2.... a'mP m) (4.13)

By comparing the terms in eq. 4.13 and eq. 4.4, we can determine the temporal accuracy

of the multistage scheme. The scheme will be first order in time if

am = 1. (4.14)

The scheme will be second-order in time if

1
o,_ = 1. and o,n-I = -. (4. 15)

2

The scheme will be third-order in time if

1 1
_°

am = 1. c_,,,-1 = :_ , and Ctm-2 = 3 (4.16)

The scheme will be fourth-order in time if

l 1 1

(am-- 1, om-I = 2" a,,,-2 = 3 and, am-3 =7, (4.17)

and so on.

One can continue this progression and arrive at higher order schemes. It should be

emphasized that the leading coefficient am should always be 1.0 for the scheme to be

at least first order in time.
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The amplification factor of the multistage explicit time-stepping scheme, G, can be

derived from eq. 4.13 and will take the following form

qn+l p2 pmG- - l+alP+olo2 + .... +c_l .... am (4.18)
qn

The stability and damping properties of the multistage scheme are associated with

complex polynomial G. G is a function of the coefficients c_s and of P. The complex

function P is a function of the spatial operator used to interpolate q at the cell interface.

Thus the stability properties of the multistage scheme are tied to the spatial operator used

to compute the flux at the cell interface.

In this study a control volume approach was implemented where the spatial dis-

cretization of the wave equation takes the form:

Oq [qi+½ - q_-½ ]

R(q) = a-ff_x = a Ax (4.19)

The extrapolation of the state variables to the cell interface is base on the so-called

_-scheme where,

n n - 1qt+½ = q, 4- [(I- K)/X, 4- (I 4- _¢)Vi]

n n - 1 l

qi--½ -- qi-1 4- _[(1 -- h')Ai- 1 4- (1 4- h;)Vi-l]

(4.20)

such that

/Xi = qi -- qi-I and Vz = qi+l - qi (4.21)

As mentioned in the previous chapter h- determines the spatial accuracy of the scheme;

h-=-1 is a fully upwind second-order accurate scheme; n = 0 is an upwind biased,

second-order Fromm scheme: h- = 1/3 is an upwind, biased third-order accurate scheme,

and n = 1 is a second-order accurate, central-difference scheme. The first-order scheme

is obtained by setting l to zero. For simplicity, in the present stability analysis the limiter

was not included in the c-scheme.

43



If we now assume the data to be harmonic

qj = qr=jA_ = qoe I/3)

where /3 is the spatial wave number ranging from 0 to rr, and 1 is v/'S] ".

(4.22)

Values of ,,3

between 7r/2 and _- are considered to be high frequencies. Combining eq, 4.19, eq. 4.7

with eq. 4.20 yields

P=-CFL(1-e-'J){1 ÷l[_-_-_-(1-e -/_) 1 4 _(1 --el_)] }
(4.23)

Fourier transform of the spatial-operator (P) is a function of the CFL number and the

wave number, P(CFL,3). The expression for the amplification factor, given by eq. 4.18,

defines the stability region of the scheme. The stability of the multistage scheme requires

that the modulus of the amplification factor IGI be less than unity. This expression gets

complicated if we attempt to substitute the expression for the complex polynomials, P,

into the expression for G and define the stability region of the scheme analytically. An

alternative way to determine the stability region of the scheme is to plot the modulus

of the amplification factor for the multistage explicit scheme and identify the stability

limit graphically.

The stability of the multistage scheme depends on the complex polynomial P and

the coefficients c_s of the multistage scheme. The locus of the Fourier transform, P,

superimposed on the contours of the amplification factor can be used to optimize the

coefficients of the explicit, multistage time-stepping scheme to better suit the upwind

schemes, and achieve better rates of convergence to steady-state. The modulus of

amplification factor IGI with the locus of Fourier transform for a first-order, four-stage

standard Runge-Kutta scheme are shown in Fig. 4.1 The influence of the coefficients

on the contours of the amplification factor had to be fully understood to facilitate the

selection of the optimum coefficient set. Optimization of the coefficients, C_s, was carried
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Figure 4.1 Contours of Modulus of Amplification Factor, IGI, and Locus of Fourier

Transform, P _e_e_, for a First-Order, Four-Stage Runge-Kutta Scheme, CFL = 2.0

out by displaying the stability plots on a computer terminal. The changes in the shape

of the contours of Ial were observed in real time as the coefficients were changed. The

"islands" of low values of IGI correspond to the roots of eq. 4.18. The main purpose

of the optimization was to find a combination of the coefficients, as, such that, for the

largest possible CFL values, there would be good high frequency damping (low values

of IGI) over a large range of CFL. That is, the optimal coefficients should maximize the

size of the islands, and make them as close to the real axis as possible. The optimization

was performed for the two-stage, three-stage, and four-stage schemes. For each of the

mentioned schemes the optimization was conducted for four different spatial operators:

first-order; second-order fully upwind (_ =-1); second-order Fromm Scheme (_ = 0);

and third-order upwind biased (_,- = 1/3). Tables 1-4 list the optimized coefficients for

the spatial operators mentioned above.
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Table 2 Multistage Coefficients for First-Order Scheme

Number of Stages

i

Two-Stage Scheme

Three-Stage Scheme

Ol

1.0

1.0

Multistage Coefficients

o2

0.22

O.325

Four-Stage Scheme 1.0 0.34

o3

0.105

0.152 O.O56

Table 3 Multistage Coefficients for Second-Order Fully Upwind Scheme

Number of Stages Multistage Coefficients

Ol &4

1.0Two-Stage Scheme

Three-Stage Scheme

Four-Stage Scheme

1.0

1.0

o2 o3

0.22

0.4 0.15

0.42 0.24 0.091

Table 4 Multistage Coefficients for Second-Order Fromm Scheme

Number of Stages

Two-Stage Scheme

Three-Stage Scheme

Four-Stage Scheme

Multistage Coefficients

1.0

1.0

1.0

o2

0.42

0.44

0.46

o3 _4

0.21

0.255 0.11

Table 5 Multistage Coefficients for Third-Order Upwind Biased Scheme

Number of Stages Multistage Coefficients

Ol o2

1.0 0.46

O3

Two-Stage Scheme
i

Three-Stage Scheme 1.0 0.48 0.22

Four-Stage Scheme 1.0 0.44 0.26 0.135
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The simplest schemes to optimize were the two-stage versions, since only one

coefficient can be selected freely. The first coefficient al is always equal to unity to

ensure that the scheme is at least first-order accurate in time. The challenge to optimize

the coefficients of the explicit multistage scheme increased by increasing the number of

stages, since the number of coefficients to be optimized increased. The most challenging

scheme to optimize was the four-stage scheme since the optimum combination of three

coefficients has to be found. The modulus of the amplification factor IGI with the locus

of its Fourier transform (of the spatial operator, P, corresponding to a maximum CFL)

number is presented in Figs. 4.2, 4.3, and 4.4, for all the spatial operators used in this

study. The resulting stability plots will be shown only in the second quadrant (upper

half of the negative real part of the complex polynomial P) since they are symmetric

with respect to the real axis. Figures 4.5, 4.6, and 4.7 represent the magnitude of the

modulus of the amplification factor tGI as a function of the spatial wave number, f3, and

the CFL number. By displaying the two sets of plots for a particular multistage scheme,

the stability region and the damping properties of the scheme can be fully displayed.

By increasing the number of stages, we are able to increase the CFL number, as shown

in Figs. 4.5, 4.6, and 4.7. The time to perform a four-stage explicit scheme is twice

that for a two-stage scheme. On the other hand the CFL number increased form 2 to

4, comparing with the case of a first-order scheme. This conclusion is also valid for

the remaining spatial operators, as shown in the stability plots. The main advantage of

going to a higher number of stages was the good damping characteristics for high wave

numbers. Considering the results of the stability analysis, the most promising schemes

of practical importance were the Four-Stage Fromm Scheme (_ = 0) and the third-order

upwind biased Scheme (_ = 1/3). The Fromm Scheme was preferred due to its low

numerical dispersion, demonstrated by results with the least oscillations around shocks.

47



It is importantto point out that,when multigrid accelerationtechniquesare imple-

mentedthe desirefor maximumCFL numberis not as importantas the high frequency

dampingrequirement.The high frequency damping (or lack of it) will affect the rate of

convergence to steady-state more significantly than the CFL number. The choice of the

optimum CFL number, when utilizing multigrid acceleration techniques, should be based

on how well high frequencies are damped.

It should be mentioned here that, in a parallel effort, van Leer, Tai, and Powell [35],

and Gaffney [I 12], also tried to optimize the Runge-Kutta coefficients for applications

with the upwind methods. The van Leer, Tai, and Powell approach was somewhat

different than the work discussed previously. Their approach assumed that a genuine

and practical multi-dimensional characteristic formulation of the Euler equations could

be found, and then they optimized the Runge-Kutta coefficients for only one value of the

CFL number. They argued that each wave would propagate at its optimum CFL-number.

Unfortunately, there is no such formulation for three dimensional cases. Generally, the

maximum CFL numbers, for the van Leer, Tai, and Powell approach, were lower, and

the damping was effective over a narrower range of CFL numbers.
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4.2 Predictor-Corrector Schemes.

The main goal was to develop a two-stage explicit scheme which had good damping

qualities and could allow the use of large CFL numbers. In the previous section we

presented two-stage schemes for different spatial operators. These schemes offered good

damping qualities but the maximum allowable CFL number was less than unity, except

for the first-order spatial discretization, as shown in Figs. 4.5, 4.6, and 4.7. It was decided

then to construct a two-stage scheme where the first stage (predictor step) required the use

of a first-order spatial operator and the second stage (corrector step) utilized a second-

order spatial operator. The scheme is a modified version of the upwind scheme of

Warming and Beam [18], and is named 1-2 scheme. The two steps are given by:

Predictor Step:

q__± = qi-l" (4.24)
2

q! = q:'-- /_t* R(q 1)

Corrector Step:

o 1 n

ql+½ --- q:' + 2( q] -- q,-l)

o ,, l (4.25)
q[_½ = q,-, + 5(q!-1 - q_-2)

q:'+'= q:'- At * R(q 2)

where, R(q) is the residual and is given in eq. 4.19

A stability analysis similar to the one in the previous section, was performed. The

only difference was that the type of the spatial operator used for the extrapolation to

the cell interface was different. The resulting plot of the magnitude of the spatial wave

number, 3, between 0 and rr and the CFL number between 0 and 2 is shown in Fig. 4.8.

The figure shows clearly that the stability limit is higher than for the two-stage schemes
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introduced in the previous section. The scheme is still second-order accurate in space and

satisfies the "shift condition". Introducing the first-order spatial operator in the predictor

step allowed us to increase the CFL number to a value of 2. The scheme is a very simple

and efficient method consisting of only two steps.

There were, however, some problems with the scheme. Since the two steps are

different, the steady-state result, depended on the time step. This phenomena was

observed in only a few cases, represented by convergence to a residual that was larger

than "machine zero". The second problem with this scheme was the limiters. None of

the flux limiters tested in this scheme converged more than two orders of magnitude.

The reason most probably is due to the mixing of time levels in the extrapolation of the

variables to the cell interface in the corrector step. Never the less the resulting flow fields

agreed well with other, fully converged numerical results.

A more serious problem is the increase of the damping factor to 1.0 at high frequencies

for CFL number 1, as shown in Fig. 4.8. In the scalar case, the CFL number can be kept

at its optimum value of 1.7. But in the case of the Euler or the Navier-Stokes equations

there are three distinct eigenvalues in each direction. Typically, local time-stepping can

be implemented, where each cell is advanced at its optimum time step. The time step is

a function of the corresponding eigenvalues at that cell. One or more eigenvalues might

correspond to the CFL number ranges with minimum or no damping. This was manifested

by the lack of convergence of the I-2 Scheme when utilized in a multigrid procedure.
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second-order accurate.

lowing:

For multigrid applications, this scheme was modified by making the predictor step

Thus, the predictor step equation 4.24 is replaced by the fol-

" 71

q]+½ = q_ + _(qi - q_-l)

q]_ . 1 n
7

q: = q:'-- /kt * R(q 1)

The corrector step is identical to the corrector step in the 1-2 Scheme and will only be

repeated here for the sake of completeness.

Corrector Step:

(4.26)

o 1 1 ),
= q:'+ ,5(q,- q,_,)

, 1
q_'_½ = q_'--, + _(q_-I - q_-2) (4.27)

q:,+l = q:,_ At * R(q 2)

The plot of the damping characteristics of this 2-2 Scheme is shown in Fig. 4.8. The

maximum stable CFL number is now only 1.0, but its high frequency damping is improved

significantly. The 2-2 Scheme performed better with mulfigrid.

One of the main advantages of using the explicit time-stepping schemes was their

simplicity. They could be extended to higher dimensions easily. They fit into a multi-

block environment naturally. They were easily implemented on massively parallel

machines, such as CM-2. The main drawback was the restriction on the time step,

especially on highly stretched grids (viscous grids). However, by utilizing acceleration

techniques, local time-stepping, implicit residual smoothing and multigrid techniques it

was possible to overcome this drawback and increase the stability region of the scheme,

as will be shown in the next chapter.
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CHAPTER 5

ACCELERATING TECHNIQUES

Local time-stepping, Implicit Residual Smoothing, and Full Approximation Storage

(FAS) multigrid procedure, were employed in the present algorithm to remove the stiffness

from the governing set of equations and to accelerate the rate of convergence to the

steady-state solution. These techniques were integrated with the explicit-multi-stage time-

stepping scheme, discussed in the previous chapter, to enhance the overall computing

efficiency and performance of the algorithm. For unsteady flows, the accelerating

techniques employed cannot be applied and a global time step was used.

5.1 Local Time-Stepping

Local time-stepping allows each cell to advance in time by the maximum allowable

local time step, as dictated by the local stability requirements. This process allows

faster signal propagation through the computation domain, relaxes the stiffness of the

governing equations, and hence increases the rate of convergence to steady-state. An

accurate estimation of the allowable time step is of paramount importance if a robust

algorithm is desired. The time step used in this study was based on both a convection

and a diffusion stability limit, and is given by:

1 1 1 1 1 1 1

where Art _> Az U I + a

CFL #[ { (47)} 1 ]nt----_t>>.A7 = P 4>t max '-_r + 5 {[l_lyl + It, ll[ + l/fill}

4>1= l_ + l_ + l_; l= _,77, and ¢
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The first three terms on the right hand side of equation 5.1 result from stability limitations

on the inviscid flux, while the last three terms are due to stability limitations on the

diffusion terms. The expression for the time step is based on the stability analysis study

presented in [33]. The diffusion limit on the time step _t_' makes the scheme more

robust on fine grids, and in boundary-layer type flows [113].

For unsteady flows a global time step was used which was required to be the smallest

maximum time step calculated within the computational domain.

5.2 Implicit Residual Smoothing

Implicit residual smoothing extends the stability limit, and improves the damping

properties of the multistage time-stepping scheme. Lerat [38] introduced the idea of

residual smoothing for the Lax-Wen&off scheme. Jameson and Baker [29] applied

the idea of an implicit residual smoothing in conjunction with modified Runge-Kutta

schemes. This procedure has been developed further by [28, 33, 40-42],by employing

a central-implicit-residual-smoothing operator. The use of an upwind-residual-smoothing

operator was employed also [43, 44]. The smoothing operator modified the basic k-stage

explicit scheme of eq. 4.10 in the following manner

O(G - G,,) O(H - H,,)]

07] + J
QO = Qn

Q_ =Q"-o_R'(R(Q°))

Q: = Qn _ c_:R.(R(Q1))

Qn+a = Qk

(5.2)
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The smoothed residual R* is a function of the unsmoothed residual R. The smoothing

operator can be either an explicit or an implicit operator. In the present study an implicit

operator was employed. For three-dimensional flow, the smoothing operator is given

by:

(1 - e(O_()(1 - %0,m)(1 - e¢O¢¢)R* = R (5.3)

where e_, er], and e¢ are the smoothing coefficients for the _, 7/, and _" coordinate

directions respectively. The second-order-central difference operators are 6_, 6rp], and

6_-¢; where

O_R = R,+_a,k - 2Ri,j,k + Ri-l,j,k (5.4)

Similar expressions for 67777,and 6¢C apply. An efficient tri-diagonal solver, the Thomas

Algorithm, was applied sequentially in all three directions to evaluate the smoothed

residual R* such that:

(i - e_(_)R _ = R

(1 - e,/5,m)R '_ = /_ (5.5)

(1 -ec6cc)R* = R'

Following the same guidelines and notation used in performing the stability analysis

in chapter four, an analytical investigation of the one-dimensional wave equation was

conducted to study the effect of the residual smoothing operator on the stability limit

of the basic explicit time-stepping scheme. The implicit residual smoothing operator, eq

5.3, for a one-dimensional problem, in the x-direction, is given by

(1 - ez6zz)R* = R (5.6)
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which yields the following form when expanded

* * = R-e.Ri_ 1 + (1 + - ezRi_ 1 , (5.7)

If we assume that R* = Fl*(t)e I_* and R = R(t)e I_'* and substitute in eq. 5.7, we get

k
/_* = " where 3 = _x (5.8)

1 + 2ez{1- cos(/3)} '

The above equation shows that the smoothed residual is a function of the unsmoothed

residual, the smoothing coefficient, and the spatial wave number.

The impficit residual smoothing performed well, when combined with the modified

Runge-Kutta scheme, and the 2-2 scheme. The implicit residual operator damped the

high frequency errors and allowed the use of a higher CFL number which improved

the rate of convergence to steady-state. On the other hand, the overall performance

was rather disappointing when combined with the 1-2 Scheme, and no gain from using

the implicit operator was achieved. The plot of the damping characteristics for the 2-

2 Scheme, when combined with the smoothing operator and a smoothing coefficient of

0.5 is shown in Fig. 5.1. Comparing Fig. 5.1 and Fig. 4.8 for the unsmoothed scheme

clearly demonstrates that residual smoothing not only increased the stability limit of the

scheme and allowed the use of a higher CFL number, but it also provided good high

frequency damping.

In the early stages of the present work, a constant scalar residual smoothing coefficient

was used. The smoothing operator was employed after every stage of the time-stepping

scheme and was activated uniformly in all three directions. The value of the residual

smoothing was selected to be between 0.1 and 0.5, depending on the case investigated, the

computational grid, and the CFL number. A higher value for the smoothing coefficient

was used in a coordinate direction where the grid was highly stretched. Increasing the
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value of the smoothing coefficient allowed the use of a higher CFL number. Increasing

the CFL number by a factor of two, usually gave the best rate of convergence. It should

be emphasized that changing the value of the smoothing coefficients changed the shape

of the amplification map as well as the stability range of the scheme.

In the next stage of development, an adaptive implicit residual smoothing technique

was employed. This procedure was originally suggested by Martinelli [40], and de-

veloped further in by Swanson, Turkel, and White [33] for two-dimensional, central-

difference schemes. It was extended subsequently to three-dimensions, and yields the

following expression for the smoothing coefficients [42, 114]:

1

IGI

2

2
CFL

3 0

Figure 5.1 Modulus of Amplification Factor as a Function of the Spatial Wave Number

and the CFL for the Predictor-Corrector Scheme with Residual Smoother (e = 0.5).

69



e_= max -4 \ C F L

1 [(CFL*% = max, _ CFL

, )2]}-1 ,o

(A n + _(A( + A¢)) - 1 ,0

{[( 1}1 CFL* A¢

-1 ,0

(5.9)

Here, e_, er/, and ¢_. are the adaptive residual smoothing coefficients which are

CFL*
functions of the grid aspect ratio and the spectral radii A_, A,l,and A¢; -CTT is the

ratio of the CFL number of the smoothed scheme to that of the basic explicit scheme.

Increasing the ratio of --_ > 2.0 caused the high frequency damping of the scheme to

vanish, which was detrimental to multigrid convergence. The smoothing operator was

applied after every stage of the Runge-Kutta time-stepping scheme.

5.3 Multigrid Method

The multigrid acceleration technique has been employed in the present work to

augment the time-stepping schemes, discussed in chapter four, and to enhance the

performance of the developed algorithm. Multigrid is still in its infancy, and a great

deal remains to be learned about its performance. The multigrid acceleration technique

was developed originally by Fedorenko [45, 46] in 1961. It was further developed

by Brandt [47] and applied to an elliptic set of equations. The work by Brandt and

many others has led to the popular use of multigrid by many in the fields of applied

mathematics and computational engineering. The basis for multigrid is the use of

successively coarser grids to calculate corrections to the solution of a partial differential

equation (or set of partial differential equations) on a 'fine' mesh. These corrections

reduce the low frequency components of the error in the fine-grid solution. Since the
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coarse-gridscontainsignificantly fewer points than the fine-grid, less work is required to

perform a computation there than on the fine-grid. ExceLlent discussions concerning the

development of the multigrid technique can be found elsewhere [48-50]. The multigrid

has been used successfully for solving the potential, Euler, and Navier-Stokes equations

[51-53, 55]

The development and implementation of multigrid for linear problems is described by

Briggs [115]. Unfortunately, many problems in engineering are described by non-linear

equations or sets of equations. This is particularly true for computational fluid dynamics.

Because of the non-linear nature of the equations, the Full Approximation Storage (FAS)

multigrid procedure has to be used [116].

Since some understanding of the theory behind multigrid is necessary in order to use

it effectively, a brief development of the Full Approximation Storage (FAS) multigrid for

a non-linear problem is presented. Consider the problem

Lhu h = fh, (5.10)

where L h is a non-linear operator on a grid, gh, with spacing h. The forcing function, f,

is known and U h is the solution to the problem on the grid with spacing h. Taking u h

as an approximation to U h with an error

V h -- U h - u h, (5.11)

Equation (5.10) can be written as

Lh(uh+W h) =fh.

Lhu h is subtracted from both sides of equation (5.12) to give:

zh(uh .-_ wh) -- zh(uh) _ fh -- zh(uh).

(5.12)

(5.13)
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If the terms are smooth, they can be represented on a coarser grid, g2h with spacing 2h.

The grid g2h is formed by deleting every other point in gh; therefore, g2h_ gh. Points are

eliminated from g2h to form g4h and so forth to form g8h, glth, etc. Each subsequent grid

is a subset of the previous grid, which places compatibility constraints on the number of

grid points in each direction. Written on the coarse-grid, g2h, equation (5.13) becomes

L2h(I_huh + V 2h) - L2h(I2hu h) = 12h(f h- Lhuh), (5.14)

or

where

: =

and I_h is the restrictionoperator.

L2h(u2h) = f 2h,

-::)

(5.15)

(5.16)

Since equation 5.15 is on a coarser grid than equation 5.10, the numerical solution for

u 2h is much cheaper to obtain because fewer points are involved. Note that the operator

used on the coarse-grid has the same form as the fine-grid operator, the grid spacing (h

and 2h) being the only difference. Once the values of u2h are obtained, the fine-grid

iterative solution is updated using the following equation:

(5.17)= + Ihh [u2h - 12h {uh'_ ]

where Ihh is the prolongation operator.

It should be emphasized that the prolongated term on the right-hand side of equation

(5.14) is the correction to be applied to the fine-grid solution. Examination of this term

shows that the solution on the coarse-grid is actually a solution to the originally posed

problem, which allows the use of the fine-grid boundary conditions on all the coarse-grids

as well. In the developed algorithm, the non-linear FAS scheme utilizes the same operator

on all the grid levels. This of course simplifies the programming of the multigrid scheme.
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A grid with spacing 4h can then be used to find corrections to the "solution" of the

problem on the grid with spacing 2h. Successively coarser grids may be used until a

grid is reached which is so coarse-that a direct solution may be used (or a nearly exact

solution with only a small number of iteration sweeps). The correction from the coarsest

grid is then used to correct the correction on the next finer grid; and this is continued

through successively finer grids until the finest level is reached and the approximate

solution is updated.

The usefulness of corrections obtained on a coarser grid is dependent on the smooth-

hess of the fine-grid error passed to the coarse-grid. Hence, it is absolutely necessary that

the high-frequency components of the error on the fine-grid be minimized, if not com-

pletely eliminated. It is the responsibility of the smoother (modified Runge-Kutta and

Predictor-Corrector Schemes) to damp the high frequency components of the en'or. The

removal of the low-frequency components of the error is unimportant for all but the coars-

est grid since these frequencies can be resolved on the coarser grids where they become

high frequencies. If the high frequencies are not damped, then the resu'iction operator will

pass aliased information to the coarser grid and the entire multigrid scheme will cease to

converge, [52]. Obviously, the choice of the smoother is critical to the proper functioning

of multigrid. Thus the choice of the modified Runge-Kutta coefficients should be tailored

to improve the damping properties rather than for a slight increase in the maximum CFL

number, as discussed previously. Failure of the 1-2 Scheme to damp the high frequency

errors, over a wide range of CFL number (Fig. 4.8), disqualified that scheme for use in

multigrid applications.

The cycle of work performed starting on the finest grid, successively treating the

coarser grids, and then returning to the finest grid is called one multigrid cycle. The cycles
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are repeated until sufficient convergence is obtained on the finest grid. In the present

study, fixed cycles known as V- and W-cycles are used, and are given in Appendix D.

The restriction operator has two forms. One form is used to resWict the dependent

variables, I_ h (uh); i.e., the flow quantities p, pu, pv,pw, and e. For these, the volume

weighted average of the values of the function at mid-cells of the eight fine-grid cells,

contained in a coarse-grid cell, is used to set the value on the coarse-grid and is given

by [85]"

The other form of the restriction operator is for the restriction of residuals, I_ h [L _ (u h)].

Following Cannizzaro et al [85], a simple summation of the residuals over the eight

fine-grid cells composing the coarse-grid cell is performed such that;

L2h(u2h) -_ I_h[Lh(uh)] .-_ _-'_ [L h(uh)]

i=1

(5.19)

The restriction operations are performed for all interior points. At the inflow/outflow

boundaries, only the values of the functions are restricted, with no residual restriction.

The residual values are frozen to the fine-grid values and are not updated on the coarse-

grids. On wall surfaces, the same boundary conditions are used for all the grids.

The prolongation operation used in the current work was a wi-linear interpolation, in

the computational space, of the corrections at the eight coarse-grid ceils adjacent to the

fine-grid-mid-ceil. A practical approach to the coding of a multigrid scheme in Fortran

V is presented elsewhere [54, 117].

A constant coefficient implicit corrector smoother was used to remove high frequency

errors from the coarse-grid corrections before they were applied to the fine-grid. For the

74



test cases investigated in this study, the correction smoothing procedure did not enhance

the rate of convergence, but it should pay off for high speed flows, [114]. This operator

is identical to that used to smooth the residual in the previous section given by eq. 5.3.
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CHAPTER 6

MULTI-BLOCK

The demand to resolve the fine details of physical flows has challenged many

researchers to find new and efficient computational tools. This challenge has pushed

the development of new computer architectures and numerical techniques which permit

the solving of complex, realistic geometries and configurations for compressible flow

problems. Many problems in engineering are solved using body fitted coordinate systems.

However, many aerodynamics designs are often quite complex (geometrically), and quite

often, generating a single, body fitted grid for realistic three-dimensional geometries is a

difficult task to perform; for some configurations it is almost impossible.

In the present study, a multi-block strategy is employed to allow greater geomewic

flexibility on structured grids. The multi-block strategy (multizone) has a number of

advantages. It alleviates the problem of grid generation for complex configurations [85].

Different types of governing equations can be used on different domains [75]. Multi-

block can even allow the use of different numerical techniques and grid topologies on each

block [54]. Multiblock also requires less memory if each zone is solved independently.

Several grid methodologies such as, overlaid grids [83], patched grid [118, 119], and

blocked grid [85, 120] can be applied to simplify the grid generation, as well as provide

geometric flexibility, and mesh refinement. In the present study, blocked grids have been

used because the flow properties are conserved automatically across the block interface.

The result section will show that this allows discontinuities, within the computational

domain, to move freely across the block interfaces. The multi-block strategy along with

76



the interaction between multi-block, multigrid, and time integration schemes will be

discussed in the this chapter. The different boundary conditions applied on the block

faces will also be discussed.

6.1 Multi-Block Strategy

A multi-block strategy is used to allow greater geometric flexibility. The solution

domain is divided into multiple zones (blocks) and the grid for each zone is then generated.

Each block within the computational domain is treated as a three-dimensional box. Each

block can have a different grid topology. Different grid topologies are often better suited

for a particular flow component or configuration within the computational domain. If the

blocks, and block grid topologies are chosen appropriately, the difficulty of generating a

boundary fitted grid can be reduced. Also, the placement and control of wall boundary

conditions are more flexible. The trade-off is the computational overhead required

for communication between the multiple blocks across their respective intersections

(interfaces). In reality, the lagging of communication across the interfaces can slow

convergence.

Numerical treatment of grid interfaces is of paramount importance for algorithms that

employ different grids within the computational domain. Interface boundary conditions,

if not handled properly, can cause the numerical solution to degrade at interfaces [121].

In the present multi-block implementation, the grid in adjacent blocks, connected across

an interface, is assumed to have C ° continuity. The grid lines at the block interface are

continuous but the slopes are not necessarily continuous. Having C ° continuity greatly

simplifies the handling of the boundary conditions across the interface, and avoids the

necessity of spatial interpolation of the data when loading ghost cells at the block interface.

It also ensures the accuracy and conservation of flow properties across each interface.
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Figure 6.1 Schematic of a Block Face with a Generic

"Patch", Accommodating Multiple Boundary Conditions

This allows discontinuities within the computational domain to move freely across these

interfaces as will be shown in the result section.

In the early stages of the present work, the multi-block strategy [85], used a

homogeneous boundary condition for any given face of the block. (The entire face of the

block had to be a wall, an inflow/outflow boundary, or an interface with another block.)

That limitation has been relaxed to allow multiple boundary conditions per face [42,

117]. The face of each block can be divided into rectangular patches, where each patch

can utilize a different type of boundary condition, as shown in Fig. 6.1, thus increasing

the flexibility of the code for handling complex three-dimensional configurations with

different boundary conditions. The boundary conditions for each patch on each block

face can be specified in an input file to the algorithm, and they are not "hard-wired" in

the source code.
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On the block faces that have either a wall or an inflow/outflow boundary condition,

standard boundary conditions are used, as will be discussed later. On faces that are

interfaces,a specialinterfaceroutinepresetsthe values in two layersof ghost cells

(normal to the face) equal to the latestvalues in the coincident interiorcellsin the

adjacent blocks. The updates of the interfaceghost cellsare performed before each

iterationin a given block.The iterationon each block can then proceed without the need

for furtherinformation from adjacent blocks. Hence, each block is thickened by two

ghost cellshellswhich carrythe solutionfrom adjoiningblocks,as boundary conditions,

intothe computationally activeblock.

6.2 Multi-Block and Multigrid

There are two possiblestrategiesfor the implementation of multigridwith a multi-

block grid structure.Either multigridinside of multi-block,or multi-blockinside of

multigrid can be used. The firststrategyimplies thata complete multigridcycle (or

cycles)willbc performed fora given block.Subsequently,computation moves to thenext

block and so forthuntilallthe blocks are complete. This strategycan be advantageous

since itallows the flexibilityof differentnurnbcrs and/or types of multigridcycles for

differentblocks, and they can bc adjustedto speed convergence in slowly converging

blocks (assuming only steady-stateresultsare sought). Unfortunately,communication

between the blocks isreduced which slows convergence.

With the multi-blockinsideof multigridstrategy,the multi-blockstructureis just

a way to update allthe points on grid h in the multigridcycle. Then a restrictionis

performed on allthe blocks and the multigridprocessiscontinued on each block forgrid

2h. This continuesfor each of the multigridgrids,and allows communication between

the coarse-grids in the multigrid cycle, through updates of the interface conditions. It
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Figure 6.2 Schematic of Multi-Block-Multigrid Strategy

also eliminates the need to either freeze values for the ghost cells at their fine-grid values

or invent some interface boundary condition on the coarse-grids. This method can also

reproduce the convergence history of a single block solution using an explicit algorithm,

and can be used to validate the multi-block logic. The multi-block inside of multigrid

strategy was used in the present work. A schematic of the strategy is shown in Fig. 6.2.

6.3 Boundary Conditions

When solving computational fluid dynamic problems, several types of boundaries can

be encountered. These boundaries can be real boundaries or artificial boundaries. The real

boundaries can be simple solid or porous surfaces or complex wing-body junctures, while

artificial boundaries can be far field boundaries or symmetry planes. These boundaries

are the link by which the computational domain senses the rest of the "universe". They

drive the solution in the computational domain. An inappropriate boundary condition or
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boundaryprocedure can have a destabilizing effect on the numerical solution. It can be the

difference between fast convergence to steady-state or no convergence and instabilities.

Thus it is of paramount importance, when solving fluid dynamic problems numerically,

to select and implement appropriate boundary conditions and boundary procedures.

In the present study, each block within the computational domain is treated as a

three-dimensional box. This box has six faces and it is on these faces that the bound-

ary conditions have to be applied. Several types of boundary conditions have been

incorporated in the developed algorithm corresponding to the different test eases investi-

gated. These boundaries are inviscid/viscous solid wails, symmetry planes, inflow/outflow

boundaries, and the interface between blocks. To facilitate the treatment of the boundary

conditions and the evaluation of the fluxes at the boundaries, two layers of ghost cells

(virtual/phantom ceils) are used at the boundaries, as shown in Fig. 6.3. The ghost

ceils have their own volume and directed areas, and are similar to any other ceil in the

computational domain, except they are not updated during the block computations. The

memory allocation for each of the blocks is increased by two planes on each of the six

faces. A description of the various types of boundary conditions and their implementation

in the numerical algorithm will be discussed in sections which follow.

Solid Boundary When solving the Euler Equations, the boundary conditions to be

applied at solid boundaries are flow tangency conditions. The velocity component normal

to the solid boundary is set equal to zero. The pressure is extrapolated linearly from inside

the computational domain to the wall. One only needs the pressure at the wall to compute

the inviscid flux [122]. More complex boundary conditions exist in the literature but the

current approach has been robust and produced accurate results for the test eases studied.

When solving the Navier-Stokes equations, we enforce the no slip and the no injection

boundary condition at the solid boundary. The pressure is extrapolated from inside the
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computational domain. The treatment of the inviscid part of the flux is similar to the

treatment pursued for computing the inviscid flux in the Euler Equations. In all the

viscous test cases investigated, it was assumed that heat transfer between the fluid and

the solid boundary was negligible; an assumption of an adiabatic wall was made. The

thermodynamic properties in the ghost cells, for physical boundaries, are set equal to

the properties in the ceils adjacent to the boundary. The velocity in the ghost ceil is

computed by requiring the average of the velocity in the ghost cell and the cell adjacent

to the boundary to be equal to zero on solid boundaries.

Symmetry Plane The third type of boundary condition encountered in this study is the

symmetry plane boundary condition. The values in the ghost cells are set to be the mirror

image of the interior ceils at the symmetry plane. The evaluation of the flux is the same
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as the evaluation of flux at any point in the computation domain. The only difference is

that the symmeu'y plane flux utilizes information stored in the ghost cells.

Inflow/Outflow Boundary. A non-reflective type of boundary condition at the far field

is essential to minimize the reflection of non-physical outgoing disturbances. Thus a

characteristic non-reflective type of boundary condition is used to compute the flow

variables in the ghost ceils at the inflow/outflow boundaries. This type of boundary

condition is based on characteristic variables and the assumption that the flow is steady

and locally homentropic at the boundary. The procedure for implementing the boundary

condition was developed by Thomas and Salas [123] for two-dimensionai flows. The

derivation and application of the characteristic boundary conditions for three-dimensional

flows are discussed in detail elsewhere [100].

In applying the characteristic boundary conditions for the developed algorithm, one

can proceed by computing the Mach number normal to the boundary, at the first interior

cell in the computational domain. That Mach number is used to determine the nature

of the flow; subsonic or supersonic flow. If the flow is subsonic, the two Riemann

invariants R +, and R-, are computed as:

2

R+ = qmt + T__ laint,

2 (6.1)
and R- = q,'e.f a,.ey,

_t -1

where a and q are the speed of sound and the contravarient velocity normal to the

boundary. The subscript int and ref indicate the first interior cell to the boundary and at

reference conditions, respectively. Here, qre/, and qint are given by:

q,,,t = ui,.,ti, + v,,.,ti u + wi,ti, . (6.2)

_,_= In where l=_, q, (, and subscript n=x, y, z
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We can add and subtractthetwo Riemann invariantstocompute thelocalvelocitynormal

to the wall, qg, and the speed of sound ag such that

qg= 0.5(R+ - R-),

ag= 0.25(3,- 1)(R+ - R- )
(6.3)

If the computed qg, normal velocity, is positive, the boundary is a subsonic outflow.

Thus the entropy and the tangential velocity are carried outside the computational domain

by the outgoing characteristic waves. The Cartesian velocity components and entropy in

the ghost ceils are then computed as follows

ug = Uint + (qn - qint)lx,

vg = vint + (qn - qint)iu,

(6.4)

wg = V,n¢ + (qn - q,nt)lz,

, "v

s = Pi'nt / Pmt

where s* is an entropy related function.

If qg, is computed to be negative, the boundary is a subsonic inflow. Thus the entropy

and the tangential velocity are carried inside the computational domain by the incoming

characteristic waves. The Cartesian velocity components and entropy in the ghost cells

are then computed as

uo = ure.f + (qn-qref)lx,

vg = Vref + (qn --qrey)ly,

Wg = wTef + (q,- qrel)iz,

(6.5)

* "r
s -'- Prey / Prey.
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Figure 6.4 Inflow and Outflow Boundary Conditions

The density, pressure, and the total energy in the ghost ceils are computed for both the

subsonic inflow and outflow as:

1

o

a'p9
P9 = _,

I o ,2
and E, _ "I Po_1 + "qP°(U;. + v° + w2)"

(6.6)

For supersonic inflow, all characteristic waves are entering the computational domain

and the flow variables in the ghost ceils are set to the freestrearn values. In the case

of supersonic outflow, all characteristic waves are leaving the computational domain

and the values in the ghost cells are extrapolated from the interior. Second-order

extrapolation was always implemented. Figure 6.4 shows the four different scenarios

for the inflow/outflow boundary.
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It should be emphasized thatthe characteristicboundary conditionsare valid for

steady,locallyhomentropic flow. For viscous dominated regions,a simple,robust and

reasonableprocedure isto extrapolateallthe variablesatthe downstream boundary from

the interior.

Interface Between Blocks This type of boundary condition ordy arises in a multi-block

domain at the interface between various blocks. This boundary is not a physical boundary

and it is of paramount importance to treat the computational ceLts at the interface with

the highest level of care, in order to ensure accurate transfer of data from one block to

another. The interface should be transparent to the flow of information across it.

Two 'ghost' ceUs are used to pass aLl the necessary information from a neighboring

block to a cell at the face of a given block without degradation of accuracy at the interface.

A special interface subroutine was used to load the data from the internal cells in the

neighboring blocks into the proper ghost cells. This process was performed after the other

boundary conditions were enforced, and between each sub-iteration on a given multigrid

level. The flux at the interface is calculated in the same way as it is calculated at any

other point within the computational domain. The only difference is that the interface

plane utilizes information from its neighboring block. It should be noted that the present

algorithm has the capability for a block to interface with itself.
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CHAPTER 7

TEST CASES

7.1 Background

The developed algorithm was utilized to compute several test cases of interest.

The main objective of the computations were to validate, demonstrate, and assess the

predictive capability of the algorithm. In the present chapter, results of the computation

of corner flow, plume flow, laminar and turbulent flow over a fiat plate, an ONERA M6

wing, and the unsteady impingement of a jet on a ground plane are reported. Each test

ease was computed in order to verify a certain aspect of the developed code, as will be

shown in the following sections.

The first test case considered was an inviscid, three-dimensional supersonic flow

through a corner of intersecting ramps. That flow has been investigated both experimen-

tally and numerically by several researchers, [124-127]. The flow field encountered is

highly complex and is dominated by complicated shock swuctures, shock interactions,

shear layers, and shock boundary-layer interactions. A schematic of the flow structure is

given elsewhere [127], and is repeated here as Fig. 7.1.

Typical examples of such flows are supersonic/hypersonic inlets and wing body

junctures. In the case of supersonic and hypersonic inlets, the associated shock structure

is of paramount importance, since that flow is convected through the combustion chamber

and can lead to non-uniform combustion. Therefore, the development of efficient

algorithms which can predict accurately the flow field, while consuming reasonable levels

of computer resources is highly desirable. Clearly the present numerical scheme should
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be capable of accurately resolving the complicated shock structure on a reasonably fine

mesh. Even in its simplest form, (inviscid formulation), the flow problem considered is of

significant physical importance, and represented a challenge to the numerical algorithm.

The second test case computed was the non-axisymmetric jet exhaust plume. Several

studies have been conducted, [75, 128, 129], to investigate the performance of non-

axisymmetrie jet exhaust plumes. The motivation for the non-axisymmelric jet flow

studies has .been the fact that they can provide comparable or superior level flight
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performance to axisymmetric nozzles, [129]. The rectangular exit nozzle provides the jet

engine with improved thrust vectoring and thrust reversing capability, which can enable

a substantial reduction in landing and take off distance requirements while enhancing

the maneuverability in flight. An additional advantage of the rectangular exit over the

axisymmetric nozzle is that the design and structure of the rectangular nozzle is simpler

and Lighter for the same capabilities.

Propulsive nozzles of this type have been considered for a wide range of possible

appLications in ah'planes such as the Advance Tactical Fighter (ATF), the short takeoff

and landing (STOL) Eagle F-15 (F-15B) and the National Aerospace Plane (NASP).

A better understanding of the type of flow surrounding the nozzle and plume

region is needed because of its influence on the sonic boom signature and aerodynamic

performance, [128].

The non-axisymmetric jet exhaust plume flow is complex physically and represents a

challenging test case for the algorithm developed in this study. Expected exhaust plume

mixing (with the surrounding flow) will occur at transonic conditions, accompanied by

large embedded supersonic flow regions and possibly compLicated shock structures, shock

interactions, slip lines and shear layers. A schematic of the flow field showing the shock

wave, expansion fan, and slip line are demonstrated in Fig. 7.2.

Laminar and turbulent flows over a flat plate were computed to verify the implemen-

tation of the viscous terms and turbulence model (Baldwin-Lomax algebraic-turbulence

model). The turbulent flow over an ONERA M6 wing was also computed in order

to compare the performance of the developed algorithra with other three-dimensional

state-of-the-art computer codes.

The ONERA M6 wing is a basic three-dimensional configuration. The flow field

around the wing contains a wealth of aerodynamic features such as; shock waves,
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spanwise variationsin boundary layers,and the interactionbetween shock waves and

the boundary layer. The wing has been developed for the experimental support of

threc-dimcnsional,transonicand subsonic flow fieldsand has be..cnused extensively

as a benchmark casc to gauge the accuracy and performance of newly dcvclopcd

computational codes. Both Euler and Navier-Stokes solutionshave bccn rcportcclby

several researchers[130-133], and there is also a large data base of cxperimcntal

pressuredistributionsavailable,[134]. Hence theONERA M6 wing has been selectedto

validatethe capabilityof the dcvclopcd algorithm to compute a trulythree-dimensional

turbulent-flow,and to access the performance of the developed algorithm with other

three-dimensional,state-of-the-artcomputer codes.

The flow of a jet impinging on a ground plane was the lasttestcasc conducted to

validatethe developed algorithm. Impinging jets,with and without cross flow, occur

in a wide varietyof engineeringapplications(cooling,heating,and drying of a variety

of industrialproducts,tempering of glass,cooling of turbineblades,paintspraying,and

welding, arc justa few). Particularattentionhas bccn devoted to the problem, because

of itsapplicationto V/STOL (vertical/shorttakeoffand landing)aircraft[135-147]. A

comprehensive review, of previous experimentaland numerical work, for an isolatedjct

impinging on thc ground plane is given by Jalarnani[137]. An up-to-datcreview of

impinging jetsin cross flow isgiven by Bray and Knowles [144]. The associatedflow

fieldof impinging jets,ishighly complex, and unsteady. The flow fieldcontainshighly

sheared layers,vorticalregions,an impingement zonc, frccjet,and a wall jet.The jet

impingement problem is a demanding testcase. The analysisof such a complicated

flow field,requiresthe solutionof the _u'ee-dimcnsional,time-dependent,compressible,

Navier-Stokcs equations,to bc capable of accuratelyresolvingthe entireflow field.
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A Schematic of the flow field of an isolated jet impinging on a ground plane is shown

in Fig. 7.3. The numerical simulation of such a complicated flow field will demonstrate

the predictive capability of the developed algorithm, to resolve complex unsteady flows.

FREE JET
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Y
\

"_-- S'_TAGNATION REGION WALL JET

Figure 7.3 Schematic of an Isolated Jet Impinging on a Ground Plane.

When a jet impinges on a ground plane a wall jet is formed. The wall jet flows

radially outwards from the zone of impingement. In the presence of a crossflow, the

wall jet flowing radially outward is opposed by the crossflow (free stream) and rolls up

into a horseshoe-ground vortex as shown in Fig. 7.4. The ground vortex is the primary

mechanism for hot gas ingestion, creating dust clouds, and causing lift loss for the

V/STOL aircraft.

There is a significant amount of scatter in the database available for jet impinging

studies [144]. Extra numerical and experimental research work is highly recommended
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to complete the development cycle of V/STOL aircraft. Developing a tool that can be

used to simulate numerically the flow field of a jet impinging on a ground plane, with

and without cross flow is highly desirable.

JET EXIT

FREESTREAU VE'OC TY
CROSSFLOW VELOCITY -- I_1_ /

VQ° _ GROUND I_'/:

Voo VORTEX H _ \

Figure 7.4 Schematic of a Jet Impinging on a Ground Plane in Presence of Crossflow

Even in its simplest form, the flow problems to be considered in the proposed work

are of significant physical complexity. The computed flow fields will contain most of the

rich features of fluid mechanics (shocks, rarefaction waves, shear layers, etc.). Clearly

the numerical scheme should be capable of resolving all of these features accurately on

a reasonably fine mesh. The developed algorithm must prove to be robust and reliable

to provide the user with the necessary confidence in making design decisions based on

the results obtained from this scheme.
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7.2 Corner Flow

The flow through a rectangular channel configuration with two compression ramps

forming a compression corner about which the channel is symmetric was the first test

case computed. A schematic of the compression corner is shown in Fig. 7.5. The back

and bottom walls of the channel have converging ramps, each with inclinations of 9.5 °.

A supersonic inlet flow Mach number of 3.0 was used for the first test case. The

2-2 Prcdictor-Corrector, Explicit Scheme was employed to compute the flow field. Mach

contours on the two side-walls, and the exit plane arc shown in Fig. 7.6, while the

pressure contours are shown in Fig. 7.7. The Mach and pressure contours show clearly

that three shock surfaces are generated. Two of the shock surfaces are two-dimensional

Y

®
Yo' Z

Z

X

Figure 7.5 Schematic of Compression Corner.
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wedge-flow shocks, which can be verified using a two-dimensional analysis based on

the Mach number normal to the leading edge of the wedge. The third surface is formed

where the two wedge shocks coalesce to form a three-dimensional flow region which

is shaped like a cone. This can be seen in Fig. 7.6, where the Mach line contours are

shown on the back and bottom walls, and on the exit plane of the channel. The positions

of the wedge shocks are apparent on the back and bottom walls as regions of highly

concentrated Mach Lines perpendicular to the flow direction. Also, on these two walls

the edges of the cone shaped surface can be seen. On the exit plane, four flow regions are

present. In the upper right corner is free stream, which is one-dimensional flow. From

the middle of the plane to the lower left comer (where the flow is three-dimensional),

the bottom of the cone surface appears as a partial disc. The two wedge shock planes
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Figure 7.6 Mach Contours, Mi,det = 3.0 and _ = 9.5 °.

Figure 7.7 Pressure Contours, Minlet = 3.0 and a = 9.5 °.
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canbe seen in the upper left comer and the lower right comer of the exit plane. Note

that since the geometry of the channel is symmetric about the compression comer (the

one joining the back and bottom walls to the exit plane of the channel), the steady-state

flow field is symmetric about the corner.

A schematic of the different flow zones, at the exit plane is discussed by Marconi

[127], and is shown in Fig. 7.1. The wall shock, comer shock, two-dimensional flow

regions, can be identified, along with the one-dimensional free stream flow, and the

three-dimensional regions in Fig. 7.1. A qualitative comparison between the computed

results, Fig. 7.6, and Fig. 7.7, and the schematic diagram of the flow field [127], clearly

shows that the present algorithm captured all four zones in the flow field accurately, and

resolved the complicated shock structures. The triple points, where the one-dimensional

free stream region meets, the two-dimensional wedge flow and the three-dimensional flow

region, have been captured by the present computation, as shown in Fig. 7.6 and 7.7.

A comparison between the computed results, the two-dimensional results of Marconi

[127], and Kufler [126], and the experimental data of Charwat and Redekeopp [124] is

shown in Fig. 7.8. Marconi [127] used a shock-fitting code to obtain his results, while

Kuder [ 126] used a second-order central-difference shock capturing scheme. The present

results are in good agreement with the numerical and experimental results. The present

numerical results, as well as Kutler's [126] results, suffer from over- and under-shoots

at the shock wave, as expected. It should be emphasized that these oscillations are due

to the fact that the shock wave is cutting obliquely across the grid lines. Pressure

oscillations near the shock wave are evident in Kufler's results. The reference pressure,

Pb, in Fig. 7.8, is the pressure value on the side wall in the two-dimensional flow region.

Yo is the point where the two compression ramps intersect, corresponding to the location

of Pb, as shown in Fig. 7.5.
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To comparethe performance of the different time integration schemes, the inviscid

corner flow was recomputexi on a 33 x 33 x 33 grid. Comparison between the convergence

history to achieve steady-state for the expLicit two-stage predictor-corrector schemes

(1-2 and 2-2 Schemes) and the four-stage _ = 0 expLicit scheme are shown in Fig. 7.9.

It should be emphasized that the predictor-corrector schemes need only about half the

CPU time per iteration, compared to the four-stage, explicit time-stepping schemes.

The convergence history to steady-state for the four-stage explicit scheme is shown in

Fig. 7.10. By comparing Fig. 7.9 and Fig. 7.10, it can be seen that the best performance
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Figure 7.8 Comparison of Numerical and Experimental

Surface Pressure Distributions of Comer Flow.
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was achieved with the I-2 Scheme for thisparticularproblem. The main drawback of

the 1-2 Scheme is itsincompatibilitywith multigridaccelerationtechniques as shown

in Fig.7.11. This is in agreement with the stabilityanalysisstudy reported earlierin

chapter four. The second drawback was thatthe convergence rateof the I-2 Scheme

deteriorateson fine(viscous)grids.

To validate the multi-block capability of the algorithm, and to ensure that the block

interface is transparent to the numerical scheme, the inviscid comer flow was recomputed

using eight blocks. The previous single block grid was used as a starting point to generate

the grids in the eight blocks by dividing the domain in haft in each of the three coordinate

directions (Fig. 7.12). The Mach contours on the two side walls, and the exit plane for the

eight block calculation are shown in Fig. 7.13, while the pressure contours are shown in

Fig. 7.14. Results of the multi-block calculation reproduce the results obtained with the

single block calculation identically. As shown in Figs. 7.13 and 7.14, the block interface

is transparent to the developed algorithm.

The convergence histories for the single-block and the eight-block calculations are

shown in Fig. 7.15. Notice that the convergence rate for the two-step explicit scheme

shows little degradation for the multiple block calculation. This is due primarily to

the choice of the multi-block-inside-of-multigrid strategy which allows communication

between the coarse-grids in the multigrid scheme. The small differences between the

two convergence histories are due to the differences in overhead due to multi-block data

transfer.
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Figure 7.12 Schematic of Grid for Eight Block

Calculation for Flow through a 9.5 ° Compression Comer
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Figure 7.13 Mach Contours for Eight Block Calculations, Minter = 3.0 and o = 9.5 °.

Figure 7.14 Pressure Contours for Eight Block Calculations, Minter = 3.0 and a = 9.5 °.
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7.3 Non-Axisymmetric Jet Exhaust Plume

Non-axisymmetric jet exhaust plume flows generally contain complex, multiple

shocks and strong contact discontinuities or slip lines. The flow complexity is driven

by both geometric complexities and Mach number, but is also influenced by static

temperature, and static pressure ratios between the jet and the free-stream flow. The

non-axisymmetric jet exhaust plume flow represents a challenging test case to the

developed algorithm. The exhaust plume mixing with the surrounding flow will occur

at transonic conditions, accompanied by large embedded supersonic flow regions and

possibly complicated shock structures, shock interactions, slip lines and shear layers.

The main emphasis of this test case, besides understanding the flow physics, was

to assess the performance of the Roe flux-differencing scheme and van Leer flux-vector

splitting scheme, for the prediction of jet exhaust plume flows. A test case was also

conducted to determine which type of extrapolation (conservative or primitive) should

be utilized to evaluate the cell interface flux. This test case was used to verify the

non-homogeneous boundary condition capability of the code as well.

To isolate the problems that Roe's flux-difference splitting scheme and van Leer's

flux-vector splitting scheme have with shocks and contact discontinuities from problems

with geometric complexities, a simple, pseudo-two-dimensional test ease was considered.

The test case was a flow from an infinitely wide nozzle of height 1.0. The jet Mach

number was taken to be 1.5 and the free-stream Mach number was 2.5. The ratio of the

jet static pressure to the free-stream static pressure (Pjet/P_) was 3.5 and the ratio of

the jet static temperature to the free-stream static temperature (T.iet/T_) was 3.0.

Although three-dimensional calculations were performed using both Roe's flux-

difference splitting and van Leer's flux-vector splitting schemes, they were compared

with a two-dimensional, shock-fitting method [148]. The flow field is symmetric about
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the x-plane and thus only halfthe flow fieldiscomputed numerically.Figure 7.16 isa

schematic of the upper half of the flow fieldshowing the shock wave, expansion fan,

and slipline.A partialview of the grid used is shown in Fig.7.17. When generating

the grid,specialattentionwas devoted to the alignment of the grid lines,as much as

possible,with the shock wave and slipline.

Y

6h

Shock
Expansion Fan

Slip Line/

Wall

Figure 7.16 Schematic of the Computed Flow Field

for a Pseudo-Two-Dimensional Jet Exhaust Plume
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Figure 7.17 Partial View of the Two-Dimensional Jet Exhaust Plume Grid.

The Mach and pressure line contours for the Roe's flux-diferencing splitting scheme

are shown in Fig. 7.18, while the Mach and pressure Line contours for the van Leer flux-

vector splitting scheme are shown in Fig. 7.19. Both schemes employed the 1-2 explicit

scheme. No flux limiters were used for the results displayed in Fig. 7.18 and Fig. 7.19.

The results obtained by the Roe flux-difference splitting and van Leer flux-vector

splitting schemes are comparable. The main difference is that the van Leer flux-vector

splitting scheme smears the slip line slightly. This behavior is expected since van Leers's

scheme ignores the linear waves (entropy and shear layer), and does not have a mechanism

to resolve the slip lines accurately [107], while Roe's flux-difference splitting is based

on the idea of solving a Riemann problem at each cell interface.
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Figure 7.18 Non-Axisymmetric Jet Exhaust Plume Calculations Utilizing

Roe's Scheme, Moo = 2.5, Miet = 1.5, Pjet = 3.5, and T_et/Too = 3.0.
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Figure 7.19 Non-Axisymmewic Jet Exhaust Plume Calculations Utilizing
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To allow detailed comparisons between the Roe, and van Leer schemes and the

shock-fitting method of Salas [148], Mach number versus dimensionless height, y/h,

was examined at the various downstream (x/h) locations. These plots are presented

in Figs. 7.20a-f. The vertical grid spacing for each of the calculations is represented

symbolically on the right of the plot. The grid spacing for the shock-fitting algorithm is

shown as the left column. The shock-fitting algorithm generates its own grid, depending

on the test case. The van Leer, flux-vector splitting scheme and the Roe flux-difference

splitting scheme were computed using the same grid which was shown in Fig. 7.17. The

spacing in the y-direction for both schemes is shown along the legend for consistency.

In Fig. 7.20a, the Mach number distribution at x/h _1.0 is presented. At this

location, the expansion fan is just reaching the lower wall. Along the expansion fan,

a region of uniform flow is present, and a contact discontinuity is observed at y/h _1.2.

Notice that both the van Leer and Roe schemes smear this feature equally. This smearing

is a result of the slip line cutting diagonally across the grid. After another region of

uniform flow, shock occurs at y/h _1.65. Smearing and overshoots occur with both the

van Leer and Roe schemes due to the skewed grid relative to that shock wave.

At x/h _2.0 (Fig. 7.20b), the expansion fan has reflected off the bottom wall and

is moving out toward the slip line. Again, both the slip line and shock are smeared and

predicted with overshoots by the two upwind schemes. At x/h _2.5 (Fig. 7.20c), the

expansion fan has moved further out toward the slip line. At x/h _3.0 (Fig. 7.20d), the

expansion fan is split by the slip line, as is apparent from the shock-fitting solution. This

is not obvious in either the van Leer or Roe schemes, due to smearing and overshoots.

At x/h _5.0 (Fig. 7.20e), the slip Line clearly splits the expansion fan as indicated by all

three methods. Notice that the shock-fitting method predicts spurious oscillations near
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the lower wall. These wiggles are more pronounced at z/h = 10 (Fig. 7.200. At this

station, the shock has moved out of the computational domain.

Although overshoots and smearing are present, several important points should be

noted from Fig. 7.20. Both the van Leer and Roe schemes do a reasonable job of

predicting the flow and are not affected by the overshoots and smearing adversely. It

was anticipated that the Roe scheme would do a better job of predicting the contact

discontinuity than the van Leer scheme. This is not apparent in the present results and

should be attributed to the 'poor' predictions by both methods, due to the misalignment of

the grid. Obviously, a better grid can be generated but the current grid is more indicative

of the type of grid that would be used for more complex geometries and flow physics.

For these complex situations, proper alignment of the grid would be impossible without

an adaptive grid scheme.

Evaluation of the cell interface flux requires the extrapolation of state variables to

the cell interface. The developed algorithm offers the capability of extrapolating either

the conservative or primitive variables. To examine the effect of utilizing either of

the extrapolation methodologies, the four-stage _ = -1, Roe's flux-difference splitting

scheme, with primitive and conservative extrapolation, was employed to recompute the

two-dimensional plume flow. Local time-sr_pping, implicit residual smoothing and the

multigrid acceleration technique were implemented to accelerate the rate of convergence

to steady-state. Comparison between the computed Mach number distribution with the

shock-fitting method of Salas [148], at various z/h-locations have been made. These

plots are presented in Figs. 7.21a-f. The resuRs show clearly that the primitive variable

extrapolation renders a smoother solution across slip lines and shocks, for all z/h-

locations. It should be mentioned that the results computed by the predictor-corrector

explicit scheme and the four-stage _ = -1 explicit scheme were identical.
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To examine the effect of using a higher order method, the Roe scheme was recom-

puted as first, second (_ = -I, and x = 0), and third-order accurate (x = I/3). Comparison

between the computed results and the shock=fitting method of Salas [18], for the Mach

number versus y/h at x/h _I.0 is presented in Fig. 7.22. The first-order Roe scheme is

highly dissipative and gives essentially useless results. The second and third-order results

are more accurate and are nearly identical. The second-order (_ -- -1) generates a larger

undershoot at the slip line, but it produces the least amount of overshoot at the shock.

The third-order accurate (_ = i/3) method generated oscillations and produced the largest

overshoot at the shock. For detailed comparison of the different order of extrapolations

at all other locations, the interested reader is referred to reference [54]. Comparison of

the convergence history for all four types of extrapolations are shown in Fig. 7.23
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To examine the flexibility of the multi-block structure, and the non-homogeneous

boundary conditions, the flow was recomputed on a two-block structured grid. The

computation domain was divided into two blocks: one block had a homogenous inflow

boundary condition, which is the jet exhaust, Mjet = 1.5), and a second block which had

a homogenous free stream inflow, Mgc = 2.0, (refer to Fig. 7.16). The two block results

were identical to the single block results. No modifications to the code were required to

go from the single-block plume calculation, with non-homogeneous boundary conditions

at the inflow, to the two-block calculation. Only the input to the program was changed

to accommodate both runs.
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7.4 Flat Plate

The main goal of computing the laminar, and turbulent flow over a flat plate was

to verify the viscous capability of the developed algorithm, and to check the correcmess

of the Baldwin-Lomax algebraic-turbulence model implementation. For the laminar case

the free stream Mach number (Met) was 0.5, and the free stream Reynolds number

(Reoo) was 1000 per unit length of the flat plate. The grid used for this test case was

65×65×5 (streamwise, normal, spanwise). The normalized minimum spacing in the

normal direction to the wall was, z_yl = 1 × 10 -4. The grid was fine enough to produce

at least ten vertical grid points through the boundary-layer thicknesses at all locations on

the plate. Although the flat plate problem was a two-dimensional problem, five spanwise

planes were employed to test the multigrid acceleration technique, and to check the

viscous terms in all three directions. The computed laminar velocity profile, and variation

of the local skin friction coefficient along the plate are shown in Fig. 7.24. Comparison

between the computed results and the classical Blasius boundary-layer solution , [93],

shows excellent agreement.

A grid refinement study was performed to determine the minimum number of points

required to accurately resolve the laminar boundary layer. Three grids were employed

in the grid refinement study; the first grid was a 33×49×5 with a /kyl = 0.015, the

second grid was 33×65×5 with a/kyl = 0.0075, and the third grid was 33×81×5 with

a /_Yl = 0.00375. The grid refinement was carried out by dividing the grid spacing

in the normal direction only. Comparisons between the computed velocity profiles, and

Blasius boundary-layer solution are shown in Fig. 7.25. The developed algorithm has

resolved the laminar boundary layer successfully, even on the coarsest grid, where there

were only five points in the boundary layer. Fig. 7.26 shows a comparison between the

computed skin friction and Blasius boundary-layer solution, for all three grids.
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The flow over the flat plate was recomputed to evaluate the effect of the implicit

residual smoothing, and the multigrid acceleration techniques on the rate of convergence

to steady-state. The recomputed case employed the 33 × 65 × 5 grid where, Ayl = 0.0075.

Four sets of computations were performed. In all four sets the four-stage _ = 0 explicit

time-stepping scheme was used to drive the solution to steady-state. In the first set,

the basic explicit algorithm was augmented with local time-stepping. In the second set

of computations, the basic explicit scheme was coupled with local time-stepping and

implicit, residual-smoothing. In the third set of calculations the basic explicit scheme

used local time-stepping and the full multigrid acceleration technique. In the last set of

calculations, the performance of the basic explicit scheme was boosted by utilizing local

time-stepping, implicit residual smoothing and the full multigrid acceleration technique.

Comparison of the convergence history for all four test eases are shown in Fig. 7.27.

As shown in the figure the acceleration techniques do enhance the rate of convergence

to steady-state. The figure demonstrates clearly that the implicit-residual smoothing is

beneficial in reducing the total number of work units required for convergence.

It should be noted, that the high frequency oscillations present on the fine mesh are

slowly damped for highly skewed cells. However it was found that the convergence of

the global flow field is improved significantly by using multigrid techniques, especially

for complex three-dimensional grids.

For turbulent flow over a fiat plate, the free stream Mach number (Moo) was kept at

0.5, and the free stream Reynolds number (Re_<>) was set equal to 1.0× 106 per unit length

of the flat plate. The grid used in this case was 65x65x5, with a Ayl = 1.0 × 10 -5.

Computations were performed using the four-stage, K = 0, (second-order, upwind-biased)

explicit, time-stepping scheme. Based on the previous experience gained when solving the

laminar fiat plate, local time-stepping, implicit-residual smoothing, and the full multigrid
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acceleration technique were employed to enhance the rate of convergence to steady-

state. Results for the turbulent flow over a fiat plate are presented in Fig. 7.28. The

computed results for the coefficient of friction agree well with the empirical formula

Cf = 0.0592 Re_ -2, [93], especially once fully developed turbulent flow is reached.

Comparison between the computed velocity profile and the I/7 power law, shows fairly

good agreement. The comparison between the computed velocity profile with the law of

the wall also shows good agreement.

----e--- Multigrid & Residual Smoothing

•_.+._. Multigrid

----o-.- Residual Smoothing
No Accelerators

a:

Figure 7.27 Convergence History For Flow Over a Flat Plate.
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7.50NERA M6 Wing

The ONERA M6 wing was selected to validate the capability of the developed algo-

rithm to compute a truly three-dimensional turbulent-flow, and to assess the performance

of the algorithm with other three-dimensional, state-of-the-art computer codes.

In the present study, a 193x49x33 (streamwise, normal, spanwise) grid was em-

ployed. The grid employed a C-O mesh topology; C in the streamwise direction and O

in the spanwise direction. The grid was generated by Bruce Wedan [149], and is shown

in Fig. 7.29. Three test cases were investigated; one was a subcritical flow and two

cases were supercritical flows. On all three test cases, a four-stage _ = -1 explicit time-

stepping scheme is used to compute the flow field around the ONERA M6 wing. Local

time-stepping, implicit residual-smoothing, and full multigrid procedures were added to

the explicit time-stepping scheme to accelerate convergence to steady-state. Roe's flux-

differencing scheme was employed to compute the inviscid flux, and a second-order,

central-difference operator was used to evaluate the viscous and diffusion terms. The

second-order upwind scheme was selected for these computations, to avoid the use of a

limiter when computing the supercritical test cases. Limiters halt convergence and lead

to limit cycle solution oscillation with no apparent convergence.

The first test case was a subcritical case, where the free stream Mach number (Moo)

was 0.699, the angle of attack (_) is 3.06 °, and the chord-based Reynolds number (Reoc)

was 11.7 x 106. The Reynolds number was based on free stream flow conditions and

the mean aerodynamic chord. Pressure distributions along several spanwise locations

of the ONERA M6 wing are shown in Figs. 7.30a-f. The computed results show good

agreement with the experimental data, [134], as shown by the Cp plots in Figs. 7.30a-f.

In Fig. 7.30, 0 represent the locations where the pressure distribution is displayed and

is equal to -_, where Y is the spanwise distance and is normalized with respect to the

semispan B/2.
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The second test case was a supercritical case, with Moc = 0.84, a = 3.06 °, and

Recx_ = 11.7 × 106. This case is considered as one of the standard test cases available

in the literature for validation of three-dimensional CFD algorithms. The same C-O

grid reported earlier is used for the supercritical test cases. The flow is attached over the

whole wing. Pressure contours on the upper wing surface are shown in Fig. 7.3 I, where a

Lambda shock is clearly defined. Comparison between the computed results, experimental

data [134], and the computational results from two other numerical algorithms, CFL3D

and TLNS3D are displayed in Fig. 7.32. CFL3D, [73], and TLNS3D, [28], are

considered to be state-of-the-art upwind and central difference schemes, respectively.

The results reported here were performed using the thin-layer, Reynolds-Averaged Navier-

Stokes equation and the Baldwin-Lomax, algebraic-turbulence model.

CFL3D is an upwind code which employs an implicit approximate-factorization time-

marching algorithm. Roc's flux-differencing scheme is used to compute the inviscid

flux with _ = 1/'3. The viscous terms are evaluated through a second-order-accurate,

differencing operator. TLNS3D utilizes a second-order central-difference operator for

the spatial derivatives and an explicit, five-stage Runge-Kutta time marching scheme.

Artificial dissipation was added to the central-difference algorithm to maintain numerical

stability, and suppress oscillations in the vicinity of shock waves and stagnation points.

For more detailed information about CFL3D and TLNS3D, the interested reader should

consult the papers by the original developers of the two codes [73, 28]. Figure 7.32

shows good agreement between the present results and the numerical results obtained by

CFL3D and TLNS3D. The computed results also agree well with the experimental data.
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Figure 7.31 PressureContoursfor ONERA M6 Wing

Mec = 0.84, _ = 3.06 °, and Reoe = ll.7x 106.
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The third test case is a supercritical case, with Moo = 0.84, a = 6.06 °, and

Reec = 11.7 x 106. Again the same grid was used. This test case is more demanding

than the two previous test cases, because stronger shocks develop on the upper surface

of the wing, resulting in significant flow separation. The pressure contours on the upper

surface are shown in Fig. 7.33. The streamlines on the upper surface of the ONERA M6

wing are shown in Fig. 7.34, where the separation region is clearly delineated. Compari-

son between pressure coefficients for the present computed results, previous experimental

data [134], CFL3D [73], and TLNS3D [28], are displayed in Fig. 7.35. Large discrep-

ancies between the computed results and the experiment exist, as shown in Fig. 7.35. As

expected, the Baldwin-Lomax, algebraic-turbulence model cannot handle separated flow,

and was incapable of capturing the global features of that flow. The size of the separated

region was under-predicted, and as a result, the shock is located farther downstream.

Figure 7.33 Pressure Contours for ONERA M6 Wing

Moo = 0.84, and a = 6.06 °, and Reoe = 11.7 x 10 6.
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It should be emphasized that the performance of the present algorithm was comparable

to the other two codes and the discrepancies between the computed results and experiment

were not due to a lack of resolution of the grid, but due to limitations on the Baldwin-

Lomax, algebraic-turbulence model. Abid, Vatsa, Johnson, and Wedan [ 150] reported that

the agreement between TLNS3D results, obtained with the same grid, and experimental

data were improved significantly when the Johnson-King turbulence model was employed.

I
I
I

Figure 7.34 Wall Streamlines for ONERA M6 Wing

Mcc = 0.84, _ = 6.06 °, and RecxD = ll.Tx106.
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7.6 Jet In Ground Effect

The last test case to validate the developed algorithm was a simulation of a jet imping-

hag on a flat plane. The analysis of such a complicated flow field, requires the solution of

the tba'ee-dimensional, time-dependent, compressible, Navier-Stokes equations, in order

to resolve the entire flow field accurately.

Two test cases were conducted: a single isolated-jet impinging on a ground-plane,

and a jet impinging on a ground plane in the presence of an ambient crossflow. The jet

impinging problem is a demanding test case. It should be emphasized that the numerical

calculations which were performed here were devoted primarily to the development and

verification of the algorithm for this three-dimensional, time-dependent, compressible

Navier-Stokes case. Also, it was desired to demonstrate and assess the capability of the

algorithm to capture the large scale phenomena associated with these unsteady flows.

The Baldwha-Lomax, algebraic-turbulence model incorporated to date in this algo-

rithm is not capable of resolving separated flows accurately. As demonstrated in the

previous test case (ONERA M6 wing at 6°angle of attack), separating and non-parallel

flow features are not modeled properly. The use of classical Reynolds-averaged turbu-

lence models to account for such a flow field is questionable and can even mask the fluid

mechanics to be studied [137, 151]. Developing a universal turbulence model capable

of resolving such a complicated flow field is beyond the scope of the present work, but

should be pursued in the future.

Jet Impinging on a Ground Plane The numerical simulation of the flow field gen-

erated by an isolated jet impinging on a ground plane, ha ambient air, was performed

for a jet Mach number of 0.5 and a jet Reynolds number of 19000, based on the jet

diameter. The jet exit was assumed to be 4 jet diameters away from the ground plane,
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andtheground-plane was assumed to extend radially outward 15 jet diameters. The flow

properties were normalized with respect to the jet inlet conditions.

A partial view of the grid used in the numerical computation is shown in Fig. 7.36.

Grid lines are clustered near the solid boundary, and along the edge of the free- and

wall-jet. The grid dimensions were 129 (normal) x 97 (radial) x 5 (circumferential)

where the flow was assumed to be symmetric.

A schematic of the flowfield for the isolated jet impinging on a ground plane was

shown previously in Fig. 7.3. The flow field is characterized by distinct regions, i.e.,

free jet, shear layer, stagnation, and wall jet regions. The numerical simulation of such a

complicated flow field can demonstrate the predictive capability of the present algorithm

for resolving complex flows.

M_. = 0.5

0

II

D

"1-

7.5 D

Figure 7.36 Partial View of Grid Utilized for

Computing a Jet Impinging on a Ground Plane.
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The numeric, a[ simulation started with the jet entering the computational domain and

interacting with quiescent air, Fig. 7.37a. The solution was advanced in time using a non-

dimensional, global time step. The time step was based on the stability criterion for the

scheme. Accelerating techniques, local time-stepping, residual smoothing and multigrid

were not used in this test case because the flow was unsteady. Snap shots, at different time

steps, of the Mach number and the stagnation pressure contours are shown in Fig. 7.37.

A starting vortex developed as the free jet propagated into the computational domain,

as shown in Figs. 7.37b-c. The free-jet impinged on the ground-plane, Fig. 7.37d, and

is deflected to form a wall jet, as shown in Fig. 7.37e. The stagnation region creates a

favorable pressure gradient which causes the wall jet to accelerate rapidly as it departs

radially from the stagnation region, Figs. 7.37f-g. The primary vortex, located on top of

the wall jet, produced a local unsteady adverse pressure gradient which caused the flow

to separate. The wall jet, with a primary vortex located above, moves with the separation

point radially outward as shown in Figs. 7.37f-h. From Fig. 7.37, the different flow fields

that identify this type of flow, namely the free jet, the stagnation region, the wall jet and

the moving separation, are predicted accurately and appear to be accurate depictions of

the flow physics.
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Profiles of the time-averaged velocity (tangential component), versus the normal

wall distance off the plane are shown in Fig. 7.38. It can be observed that the favorable

pressure gradient created by the jet impinging on the ground plane causes the wall jet

to accelerate as it departs from the stagnation region, Fig. 7.39. As shown in Fig. 7.38,

the time averaged velocity increased, from the stagnation region, to a maximum value

downstream (x/r = 2.81). Further downstream the maximum value decreased and the

boundary layer increased. The flow in the impact region (stagnation region) is dominated

by the high pressure gradient, and the flow behaves in an almost inviscid manner.

Unfortunately, there are no experimental or numerical data sets available to permit

comparison of the computed time-averaged profiles. However, a flow visualization study

conducted by Didden and Ho [ 138], reported the unsteady separation in the boundary layer

of an impinging jet on a fiat plane. Didden and Ho, suggested that unsteady separation was

induced by the primary vortex and it moved downstream in the radial direction. Jalamani

[ 137], computed numerically the two-dimensional time-dependent, impulsively started jet

issuing from a plate in proximity to the ground. His results indicated the formation of a

primary vortex, and separation of the wall jet as it moved radially outward.

Comparison between the computed ground pressure distributions, and the numerical

data of Bower [140], and the data of Bradbury [152] are presented in Fig. 7.40. The

comparison shows good agreement between the computed results and other numerical,

and experimental results. Comparison between the computed jet centerline velocity decay,

and other computational results [137, 153, 154], and with experimental data [153] are

presented in Fig. 7.41. The computed results compare well with experimental data. Data

presented in Fig. 7.41, were obtained from Jalamani [137]. The discrepancy between

numerical data are mainly because of difference in inlet jet conditions.
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Jet Impinging on a Ground Plane in Presence of Crossflow When a jet impinges on

a ground plane a walljetisformed. The walljetissymmetric and flows radiallyoutward

from the zone of impingement, as discussedin the previous section.In the presence of a

crossflow,the walljetflowingradiallyoutward isopposed by the crossflow(freestream)

and roilsup intoa horseshoe-ground vortexas shown in Fig.7.4.The flow fieldof the

impinging jetin a cross flow has been investigatedextensivelyin recentyears,because

of itsrelevance to the flow fieldaround V/STOL aircraft.

In the presentstudy,the flow of ajetimpinging on a ground planc inthe presence of a

crossflow was simulatednumcrically.A partialview ofthe gridused inthe computations

is shown in Fig.7.42. The griddimensions wcrc 66x66x33 in the normal, radial,and

circumferentialdirections,respectively.The jetMach number was 0.5 and the Reynolds

number was 100,000, based on the jetdiameter. The jctexitwas 3 jetdiameters away

from the ground planc,and the planc extended radiallyoutwards 7.5 jetdiameters.The

ratioof thecrossflowvelocitytothejetvelocitywas 0.i (v_,,= 0.I).The flow properties

were normalized with respectto the jetinletconditions.

The numerical simulation startedby allowing the crossflow to propagate in thc

computational domain untila steady-statesolution was obtained. Thus, allowing a

boundary layer to form on thc ground planc. To enhance the rate of convergence of

V.=0.1

Vj_r=0.5

15D

Figure 7.42 PartialView of the Grid Utilizedto Compute

Jet Impinging on a Ground Plane in Presence of Crossflow.
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the cross flow to steady-state, local time-stepping, residual smoothing and multigrid

were employed. The next step in the simulation was to release the jet flow into the

computational domain. Once the jet was initiated into the computational domain, it was

allowed to interact L'nmcdiately with the crossflow, and the accelerating techniques; local

rime-stepping, residual smoothing and multigrid were turned off for this unsteady flow.

The solution was advanced in time using a non-dimensional global time step. The time

step is based on the stability criteria of the scheme. Snap shots, at different time steps, of

the velocity vectors and the corresponding streamlines are shown in Figs. 7.43 and 7.44.

The jet propagates into the computational domain and interacts immediately with

the crossflow, as shown in Figs. 7.43a and 7.44a. The crossflow momentum attempts to

divert the incoming jet, but due to a lack of sufficient momentum, it fails (vv_,_ = 0.i)

to cause a significant diversion. At the zone of interaction between the free jet and

the crossflow, a primary vortex starts to form. The size of the vortex increases as it

is convected toward the ground plane with the jet, as shown in Figs. 7.43b and 7.44b.

The free jet impinges on the ground plane and is deflected as a wall jet as shown in

Figs. 7.43c and 7.44c. Subsequently, the stagnation region creates a favorable pressure

gradient which causes the wall jet to depart from the stagnation region. The wall jet,

flowing radially outward, is opposed on one side by the crossflow (free stream), and roLls

up into a horseshoe-ground vortex as shown in Figs. 7.43d and 7.44d. The size of the

ground vortex increases as it moves radially outward, Figs. 7.43e-h and 7.44e-h. The

ground vortex forms at a radial location where a momentum balance is reached between

the wall and crossflow. Fluid mass, from the wall jet (impinging zone) and crossflow,

accumulates inside the vortex until it cannot sustain itself, and a vortex breakdown occurs.

A new vortex forms and the process repeats itself. The visualization study conducted by

Cimbala et al. [ 147] supports the above description of the flow field of a jet impinging
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on a ground plane in presence of cross flow.

A comparison between the computed pressure coefficient distributions, measured

along the jet eenterline, and the numerical results (laminar and turbulent) of van Dalsem

[142] and the experimental results of Stewart [141] is shown in Fig. 7.45. The present

results compare fairly well with the experimental data [141]. The developed algorithm

computed the location of the ground vortex accurately. Both the laminar and turbulent

results of van Dalsem predicted that the ground-vortex was located further upstream than

the present numerical results, and experimental results. The core of the ground vortex

corresponds to the point with the minimum C O value. The present numerical simulation

captured the large scale unsteady phenomena of a jet impinging on a ground plane with

crossflow, and predicted the location of the ground vortex accurately. Thus the predictive

capability of the developed algorithm has been demonstrated by accurately resolving the

complicated fluid dynamics phenomena associated with such a basic, but complex flow

field.
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Figure 7.43 Velocity Vectors of the Developing Jet Flow Field in a Crossflow;

Mj+, = 0.5, M_ = 0.1, P./+t/Poo = 1, P.,,+t/P_ = 1,

_-_ =1, "/TH=3, Re= lx105 (Continued...)
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Figure 7.43 Velocity Vectors of the Developing let Flow Field in a Crossflow;

M,e, =0.5. M_ =0.1, Pje,/P_ = I,
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Figure 7.44 Streamlines of the Developing Jet Flow Field in a Crossflow M:_t = 0.5,

T t
M_ =0.1, Pj_t/Po_ = 1, _ = 1, -_ = 3, Re = lx10 5 (Continued...)
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Figure 7.44 Streamlines of the Developing Jet Flow Field in a Crossflow

H = 3, Re = 1×105M,,, = 0.5, M_ = 0.1, P,e,/ P_ = 1, = 1,
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CHAPTER 8

CONCLUSIONS

The main objective of the present work was to develop a high-resolution-explicit-

multi-block algorithm, suitable for efficient computation of three-dimensional, time-

dependent Euler and Navier-Stokes equations. The developed algorithm employed a finite

volume approach, and used MUSCL-type differencing to obtain the state variables at the

cell interface. The variable interpolations were written in the _-scheme formulation.

Two state-of-the-art techniques were available to construct the inviscid fluxes: Roe's

flux-difference splitting, and van Leer's flux-vector splitting. The viscous terms were

discretized using a second-order central-difference operator.

The present study investigated two classes of explicit time integration (two-stage

predictor-corrector schemes, and multistage time-stepping schemes) for solving the com-

pressible inviscid/viscous flows. The 1-2 Predictor-Corrector Scheme was very effective

for predicting inviscid flows, but did not perform well with muitigrid acceleration tech-

niques, due to insufficient damping of the high frequency components of the error, over a

wide range of CFL numbers. The 2-2 Predictor-Corrector Scheme provided much better

damping for the high frequency components of the error, but the maximum allowable

CFL number was only one. However, the 2-2 Predictor-Corrector Scheme combined well

with muitigrid acceleration technique and the implicit residual smoothing.

The standard coefficients of the modified Runge-Kutta method have been modified

successfully to achieve better performance with upwind differencing. A technique has

been developed to optimize the coefficients for good high frequency damping at relatively
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high CFL numbers. The coefficients were optimized using the stability and damping

factor analysis of the linear wave equation. The optimization was carried out for two-

, three-, and four-stage schemes. For each scheme the coefficients were optimized for

four spatial upwind operators: first-order, second-order upwind (_ = -1), Fromm second-

order upwind biased (_ = 0), and third-order upwind biased (_ -- 1/3), operators. The

coefficients for a total of twelve schemes were optimized. The multistage schemes

with the optimized set of coefficients were tested on a number of three-dimensional

inviscid/viscous flows. In general, the optimum CFL number agreed surprisingly well

with the stability analysis study, especially for the inviscid cases.

The explicit upwind schemes, especially for viscous flows, were not effective in

solving the compressible flow equations, when no additional convergence acceleration

techniques were incorporated. The main draw back was the restriction on the time step.

CoupLing the explicit schemes with convergence accelerating techniques is essential. The

accelerating techniques: local time-stepping, implicit residual smoothing, and multigrid

procedure, proved to be effective in accelerating the rate of convergence to steady-state.

The implicit residual smoothing extended the stability range of the explicit scheme,

which simultaneously allowed the use of higher CFL numbers. The smoothing operator

was applied after every stage of the multistage stepping scheme. Not only did the

smoothing operator extend the stability range of the explicit scheme, but also provided

better damping of the high frequency component of the error, which is necessary for

multigrid acceleration techniques to be effective. The adaptive (variable coefficient)

implicit residual smoother proved to be successful in accelerating the rate of convergence

on highly stretched grids with high aspect ratios.

When using multigrid, the improved damping properties are more important than

a slight increase in the maximum allowable CFL number. Good damping of the high
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frequency component of the error (close to _ = r), usuaLly occurred at CFL numbers

lower than the maximum allowable. Multigrid acceleration techniques enhanced the

rate of convergence, but true multigrid convergence was not achieved (to the best of

the author's knowledge, because true multigrid performance has not been achieved in

any compressible code). Multigrid performed well with the multistage time-stepping

techniques and the 2-2 Predictor-Corrector Scheme. It did not perform well with the

I-2 Prcdictor-Corrector Scheme, due to insufficient damping of the high frequency

component of error over a wide range of CFL numbers.

The developed algorithm was implemented successfully in a multi-block code. The

multi-block structure provides complete topological and geometric flexibility. The only

requirement is C ° continuity of the grid across the block interface. The solution domain

was divided into multiple blocks, and the grid for each block was then generated.

The type of boundary conditions used on each of the blocks was provided through

an input file at run time, rather than the traditional method of hard-coding the different

boundary conditions in the source code. Non-homogenous boundary conditions per block

face allowed for more geometric flexibility, and simplified handling the boundaries for

complex three-dimensional configurations. The application of the developed explicit

upwind schemes to realistic three-dimensional configurations of significant geometric

complexity is virtually impossible without the use of multi-block capability.

The developed algorithm was validated on a number of diverse three-dimensional

test cases with increasingly complex flow characteristics: (1) supersonic comer flow, (2)

supersonic plume flow, (3) laminar and turbulent flow over a flat plate, (4) ONERA M6

wing, and (5) the unsteady flow of a jet impinging on a ground plane (with and without

cross flow).. The test cases were selected to validate certain aspects of the developed
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algorithm. All of the test cases presented in this study have been computed with the

same source code; only inputs to the program have been changed.

Supersonic inviscid corner flow was calculated to verify the multi-block structure.

It was also used as the bench mark test case for all the explicit time integration

schemes. Detailed examination of a quasi-two-dimesional jet exhaust plume demonstrated

that van Leer's flux-vector splitting, and Roe's flux-difference splitting gave solutions

of comparable quality on grids not aligned with shocks and contact discontinuities.

Extrapolating the conservative variables across slip lines resulted in large over/under

shoots for Roe's scheme. The primitive variable extrapolation was found to render a

smoother solution.

Laminar and turbulent flow over a flat plate was computed to verify the correct

implementation of the viscous terms and the Baldwin-Lomax algebraic turbulent model

in the developed algorithm. The computations demonstrated the effectiveness of the

adaptive implicit residual smoothing and multigrid procedure in accelerating convergence

to steady-state.

The ONERA M6 wing was computed for three different cases: a subcritical test

case (Mo_ = 0.699, c_ = 3.06°), a supercritical case with attached flow (Moo = 0.84,

c_ = 3.06°), and a supercritical case with separated flow (M_ = 0.84, _ = 6.06°). For all

three cases, the Reynolds number was 11.7 × 106/unit based on the free stream conditions

and the mean aerodynamic dimension. Good agrement between the computed results and

other numerical and experimental results was achieved. The developed algorithm cannot

resolve separated turbulent flows accurately, because of the inadequacy of the Baldwin-

Lomax algebraic-turbulence model to resolve separated flows. A better turbulence model

needs to be incorporated if turbulent separated flows are to be investigated accurately. It

should be noted that turbulence modeling was not the emphasis in this study.
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The unsteady viscous flow resulting from a jet impinging on a ground plane, with and

without cross flow, was successfully computed. The different flow fields that identify

this type of flow, namely the free jet, the stagnation region, the wall jet, the ground

vortex, and the moving separation zone, were predicted accurately. The jet impingement

problem demonstrated the capability of the developed scheme to perform time-dependent

calculations. For unsteady flow computations, if the maximum allowable time step is

of the same order as the time scale of the physical problem, then explicit schemes will

best suit the calculations.

A state-of-the-art computational tool has been developed that is capable of comput-

ing the flow field around geometrically complex three-dimensional configurations. The

method has been tested on a number of diverse three-dimensional test cases with increas-

ingly complex flow characteristics. The developed algorithm is capable of accurately

resolving steady and unsteady compressible flow fields. To further enhance the perfor-

mance of the developed algorithm the following recommendations are suggested:

The damping of the explicit time-stepping schemes on highly stretched grids with

cells that have extremely high aspect ratios should be investigated. A stability analysis

study should be conducted on the two-dimensional, scalar wave equation and the diffusion

equation to investigate the effect of the grid aspect ratio on the damping characteristics

of the multistage schemes. This study should take into account the effect of implicit

residual smoothing and multigrid procedure.

Multigrid acceleration techniques performed well for inviscid non-stretched grids,

but the convergence rate deteriorated on viscous grids. One possible remedy lies in

using the technique of semi-coarsening in the direction normal to the wall, to improve

the non-uniformity on the coarse-grids. Other approaches have to be combined with the

multigrid method to damp the high frequency-component of error at all grid levels. An
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attempt to develop a mathematical operator to annihilate the high frequency component

of the error should be investigated.

A joint analytical and numerical study should be conducted to develop higher order

accurate, non-osciUatory schemes. A stability study should be performed to investigate

the damping characteristics of the higher order schemes.

Explicit schemes are amenable for implementation on massively parallel supercom-

puters. Work is already in progress to implement the developed algorithm on massively

data-parallel architecture (Connection Machine CM-2).

A higher order turbulence model needs to be employed in the developed algorithm,

to be capable of resolving turbulent separated flows.
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Appendix A
Full Navier-Stokes Equations

in Body-Fitted Coordinates

The time dependent compressible three-dimensional Navier-Stokes equations in gen-

eral curvilinear coordinates, written in strong conservation form (neglecting the body

forces and the external heat sources are [6]

o{a- 6'_} o{H-/4v}
OQ O{F - Fv} +- + = 0 (A.1)
0---( + O_ 0,_ O_

where Q is the vector of dependent variables and is given by ;

Q=7 pv
pw
E

(A.2)

The inviscid fluxes F, G, and H are function from the state vector Q. They are given by •

/ ]puI" + P_x puV + prlx puW + p(x

F= pvt; + p(y , G= pvV + prly , H= pvW + p(,y

pwI' + p_, pwV + pq: pwW + P(,z

(E + p)U (E + p)V (E + p)W

(A.3)

where U, V, and W are the contravarient velocity components in the _, r/ and (. They

are given by ,

I" = Ur]z "+ t'r]y q- Wrlz (A.4)

W = u(_, + t,(y + w(.

The viscous flux, Fv is given by F,, = {Fv,, Fv2, Fv3, Fv,, Fv5 }, where,
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180



Fvs-
Rref

o-[T_o-'2+ r,,(,,¢, + 0,,,%+ ,:_:) + Tc(¢:&+ ¢,,,%+ ¢/--)]

(A.9)

The viscous flux, Gv is given by G,, = {G,,,, G,,2, Gv3, Gv,, Gv5 } where,

(7,,, = [0] (A.IO)

Mre f l-t
C_ t_2 -
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The viscous flux H,. is given by, Hv = {Hv_, Hv_, Hv_, Ho,, H_} where,

Hvl = [0] (A.15)

Mref#
H?_2 --

_re f

4 2 2

_((=Q _(_¢x)+ _,,(,7_¢_- x'J_ ) +

(A.16)

4_ 4

4 '__ (¢_ + _;'; + _) +

(A._7)

- _ 1

* 4¢2"_
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Appendix B
Derivation of the Reynolds-Averaged

Navier-Stokes Equations

fluctuating components.

appears in the equation.

The Reynolds-Averaged Navier-Stokes equations are derived from the Navier-Stokes

equations by decomposing the randomly changing flow variables into a mean and a

For compressible flow triple correlations involving density

Favr6 [98] suggested a mass weighted decomposition for

compressible flows to avoid the triple correlation involving density. The following

formulations were used to decompose the flow variables in the Navier-Stokes equations

2.1.

p f, #_-7 pT pH7== _==, _=--_, _--__
P P P P

where u=fi+b, T=T+J_, H=H+/2/

note p=_+/_, P=_+t_
(B.1)

where (_+p)f=0

but f¢0

By substituting these quantities into the governing equations and averaging in time, we

get the continuity equation

/)fi 0(_ fi,) _ 0.0 (B.2)
0--[ + Oz,

the momentum equations
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the energyequation

0 0 -p_i_l + pfiilSli Uj'l'i3 7i3Ui -- Ox,
+ = 0.0

Ot Oxi

it can be shown that

(B.4)

and

/_ = _ _- i7,_, + I; - K (B.6)

with

-_A" phiiti ---:- f*ifii- - pK, and I_,"- (B.7)
'2 '2

where K is the average of the turbulent Kinetic Energy of the Turbulent fluctuations

which by definition is /'_'. Hence

= -- "rimUm + ptti (B.8)

where

/1_ ^ A

r,,,, =_ puium (B.9)

and is defined as the Reynolds stress tensor. Substituting into the energy equation gives

Ot ?).rz ruu J - 7,mu,, - ri_fij + PfiiA" = 0.0 (B.10)

A host of terms involving the fluctuations evolved and need to be modeled in order to

solve the governing equations. These terms are

pi_,h is generally considered the turbulent heat flux, and is modeled as

p(zi[_ = -kTVY (B.12)
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where kT is the coefficient of turbulent thermal conductivity, ri_ will be modeled using

Boussinesq's approximation [98]:

r, s = -puius = t_T [Oxi + Ox s 30Xm uJ -- _-PI_iS (B.13)

/_T is the turbulent eddy viscosity and is related to kT by

kT - Cp#T (B.14)
PrT

PrT is the turbulent Prandtl number and is equal to 0.9 .

together to give

ri_ and 70 are combined

IOns 0_, '20_m5.1 '2A._,s (B.15)_'T= (_.+.#T)[OXi + _x3 30Xm t3J-- 3

In the present work riSfij and p(ql(" are assumed to be small and are neglected. They

are calculated in a higher order scheme.

Applying the same procedure to the equation of state we get

2 _K (B.16)

Thus, the Reynolds-Averaged Navier-Stokes equations in dimensional Cartesian form

become;

Oq i)(f - .f,,) O(.q - .q,,) O(h- h,,)
0"[ + O.r + Oy + Oz - 0 (B. 17)

where

q= _

_w

(B.18)
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\Oz OyJ 3(/_"4-#T ) "}-

(k+kT) aT
a-gJ

(U+UT) _{B.20)

{ ]7_g:

the superscript ....

q. f, f,,, 9, 9v. h,

the averaged variables.

h,, = (Iz + t_T)

a;OiOag ]

av -s- Ou, I

2[.)o; o; o;l__ |
5 L--a7 - _ - _j I a{U+.T } ?

-fo__ ag'_ _-5[o7,_ ag_. i
"t-a;:* _7 "- t_ "- _7_- I

-2[,)ag a_ oT,l - _ 2__E_, t

(k+_T) aT /
Ta77_a7 J

(B.2 1)

has been removed for clarity, and the lower case letters

and h,. are used to identify these vectors are functions from
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In this study, the Baldwin-Lomax, algebraic-turbulence model was selected which

model the eddy viscosity. Baldwin-Lomax model implements a simple algebraic expres-

sion for the eddy viscosity. The model is easy to implement and provide reasonable

results for attached flows. For separated flows or for the purpose of investigating the

turbulent behavior of fluid motion, it is recommended that a higher order models, such

as the two equation models K - _, ff - _, and K - 7- [155] or solve for the Reynolds

stresses [6]. The Baldwin-Lomax model is implemented with the understanding of the

limitations and restrictions of the model. Higher order models should be included in the

code to give the generality and accuracy in solving turbulent problems.

There is no mechanism in an algebraic-turbulence model that can account for the

turbulent kinetic energy,K. Thus it was dropped from the governing set of equations as

well as from the equation of state. The Reynolds-Averaged Navier-Stokes equations in

non-dimensional Cartesian form takes the following form ;

0"----_+ Ox + Oy + Oz = 0.0 (B.22)

o.o,

Ou .s_ a_ I
Ptt2 ),Iref _ " _ l

P= puv , F,,- (# + _x) a_ . aw ¢
-b'7 -r -b7 I

puw -- u2 {,_a_., ov o= o a_ o_(E+p)_ 3k-a, _ _) + (_ +_) +1
W {Ou _a_ Ou,_ ± o. OT I
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I pv I

puv _ Mref

pvw

( E + p)v

0.0

ou +37
Oy

- 2_--_--3

Ov Ow
a_ + -g-_y

Ow
2 [o Ov Ou -£;z) +

(o,, o,,,_ o.o7"
w _,"b'7 + oy ] + O(_B.24)

0.0
0w

puw Mref 2 (200____wz Ou ov'_

pw 2 + p Ow v{Ov Ow'_+

- oyJ + O:
(B.25)

where

(B.26)
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Appendix C
Limiters

C.1 Minum-Modulus Limiter

The min-mod limiter is implemented in the present algorithm

n-scheme formulation, eq. (19), as follows

O (1 _)_7i + (1 + _)£i]=Q, +7[ -
0 ^

-----Qt-+l - 7[ (l - K)_T,+l + (l -Jr- _)22_,+ 1 ]

where Vi and A i, are defined as

by rewriting the

(c.1)

_i = minmod(At, /3Vi)

V, = minm°d(vi. ;':lAi)

(C.2)

A, = Q,+] - Qi

Vi = Q, - Qi-_

where, /_= and V, are the backward and forward differences, and d is the compression

parameter given by

The min-mod operator is

t = ---- (C.3)
1 --h"

minmod(ac, y) = ._ign(x ) max {O,minix sign {y }, y sign {x }l} (C.41
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C.2 Vanalbda Limiter

The Vanalbda differentiable limiter modifies the _--scheme formulation, eq. (19),

as follows

+ _[ (1 - _:Si)Vi + (1 + _:Si)_i ]

6,5'i+a
-- K,_ i+14 [(1 q' )_7i+ 1 "]- (1 nt- _,c_',+l)mi+ 1 ]

(C.5)

where

2 A,. V, +
,%',= (C.6)

and e is a small number to prevent the division by zero in the region of zero gradients.
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Appendix D
Multigrid Cycles

Three types of cycles have been employed in this study, V-Cycle, W-Cycle, and the

Full Multigrid Cycle (FMG). Basically, a standard V-cycle can be broken into halves.

The first half is the restriction part of the cycle going from the fine-grid through the

coarser grids down to the coarsest grid. The second half is the prolongation part of the

cycle going from the coarsest grid up to the finest grid. An example is shown in Fig. D.1

for a four level multigrid. The circles indicate when iterations are performed on the given

Res_ric_ion Hiilrl_ _olonqa_ion Half

Figure D.1 V-Cycle.

grid level, and the lines between grid levels indicate either a restriction or prolongation

operation. Notice that the circle for the fine-grid at the beginning of the cycle is omitted

since the iterations on the fine-grid are performed at the end of the prolongation section.

This ensures that the last operations in a muhigrid cycle include updates on the fine-grid.

It is often necessary to perform more than one iteration on a given grid to get the required

smoothness in the error for multigrid to work.

A W-cycle can be thought of as consisting of several components which are similar

to V-cycles but with different varying 'coarsest' and 'finest' grids This idea is shown
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in Fig. D.2 where a W-cycle is graphically expanded to show its 'legs'. This allows a

simple coding modification to the V-cycle program to allow W-cycles.

Fine

Coarse (_

Figure D.2 W-Cycle.

The Full Multigrid Cycles (FMG) are used to get a good initial approximation on

the fine-grid, which can be used as the starting solution for a V- or W-cycle. Figure D.3

shows the schematic of a FMG V-cycle, while the schematic of a FMG W-cycle is

shown in Fig. D.4. The basic idea of a FMG cycle is to iterate first on the coarsest

levels, assuming the finer level to be the solution level. The solution is then prolongated

to the next finer level and the problem is solved again on these three levels. The process

is repeated until the finest level is reached. The FMG cycles are inexpensive since we

are solving the problem on a coarse-grid. By the time we include the finest grid in the

FMG procedure and start to apply the regular V- or W-cycle, the global features of the

solution has already been developed.
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Fine

Coarse

Figure D.3 Full Multigrid V-Cycle

Fine

Coarse

Figure D.4 Full Multigdd W-cycle
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